
Multi Level Weight Distribution Dynamic Local Search for SAT

Abdelraouf M. Ishtaiwi∗, Marco J. Baron
+
, and Ghassan F. Issa∗

∗University of Petra, Faculty of Information Technology, Amman, Jordan

{aishtaiwi, gissa}@uop.edu.jo
+
Pedagogical and Technological University of Colombia Tunja-Boyaca, Colombia marco.suarez@uptc.edu.co

Abstract: In recent years, dynamic clause weighting stochastic local search algorithms have emerged as the-

state-of-the-art for solving satisfiability problems. In our study we experimentally investigated the weights
behaviors and movements during searching for satisfiability. Firstly, We show that, second level neighboring

clauses could be the culprit of causing the delay during the search. Secondly, we developed and experimentally

investigated a new heuristic for enhancing Dynamic Local Search known as Multi Level Weight distribution

(mulLWD). Our new heuristic is divided into two main phases. Phase one is to distribute weights within the same

neighboring area. When phase one is no longer effective, phase two take place in which the second level

neighboring area is exploited and its weights are used within the weight distribution process.

To test our new heuristic, we conducted a detailed experimental study, comparing mulLWD with one of the

leading clause weighting algorithm: Divide and Distribute Fixed Weight (DDFW). Experimental results showed

that mulLWD heuristic has significantly better performance than DDFW (of up to an order of magnitude). This

enhancement indicates that the multi level weight distribution is the key to further exploitation of local search

SAT structures. Moreover, mulLWD could be easily generalized to be used with any dynamic local search

weighting heuristic with some minor modifications

Keywords: DLS, Local Search, mulLWD, SAT, Search Heuristics

1. Introduction

The boolean satisfiability problems (also known as propositional satisfiability or SAT for short) are very

crucial to many areas in computer science and aritficail intelligence. Thus, to find a complete assignment to
a SAT problem has much deep signification. In our research we consider propositional conjunctive normal form

formulas (CNF): F = ∧m ∨n lmn in which each lmn is a literal (boolean variable or its negation), and each

disjunct ∨n lmn is a clause. The task of any given search algorithm is to find a complete assignment that

satisfies F . This task is beyond the reach of systematic search algorithms except for a limited small sized

problems as SAT problems is NP complete. On the other hand, almost any simple stochastic local search
(SLS) method could successfully solve a broad range of larger and challenging problems [5].

Since the development of the first SLS weighting algorithm for SAT, namely the Breakout heuristic [10],
tries were made to enhance the performance of local search techniques ([2], [3]). However, the

performance of these algorithms remained weak when compared to non-weighting SLS techniques. Which

remained the case until the occurrence of Dynamic Local Search algorithms (DLS) such as DLM [13],
SAPS [6], PAWS [12], DDFW [8] and more recently BalancedZ [9].

DLS algorithms depend on the use of weights to alter the search space in order to escape from local minima
(or in some heuristics could prevent encountering local min- ima). Interestingly, the most successful DLS

algorithms (i.e. DLM, SAPS, PAWS, EWS [1], COVER [11], DDFW, and recently, and BalancedZ [9])

follow the same underlying platform at which they increase weights of false clauses when the search get into
local minima, then weights are reduced based on scoring functions that are calculated during the search. For

instance, the scoring function used with most of DLS algorithms is as follows

score = M akes – Breaks (1)

where the Makes is the number of clauses that will become true when literal lmn flipped (to true if its

current value is false or to false if its current value is true) and the Breaks is the number of clauses

that will become false when lmn is flipped. Except for the probSAT algorithm which does not use weights to

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 4, Issue 1 (2017) ISSN 2349-1469 EISSN 2349-1477

https://doi.org/10.15242/IJCCIE.ER0317105 190

alter the search space but it depends on the score of the number of clauses that will become false (breaks) when

a literal lmn is flipped while in local minimum.

This study has emerged out of studying an algorithm called DDFW (Divide and Distribute Fixed Weights)
which in turn, evolved out of Pure Additive Weighting Scheme (PAWS). PAWS retain the method of

periodically smoothing weights after a number of weight increments with a difference that it uses an

incremental function rather a multiplicative function as in Scaling and Probabilistic Smoothing (SAPS).
It is worth mentioning that another methods older than PAWS used additive instead of multiplicative weight

adjustment called DLM. The difference between PAWS and DLM is that PAWS has one parameter

instead of 27 parameters (in the case of DLM it contains 27 parameters but only three need tuning) of DLM.
Also, PAWS utilize a random flat moves. DDFW also while it retaining the additive weighting framework

used by PAWS, it has a unique characteristic of combining the two main functions of weight adjustments in

PAWS (weights increment, and weight decrements) into one function. Also DDFW is fully adaptive method and

is a domain independent method that requires no parameter tuning.

DDFW was shown to outperform PAWS, SAPS, AdaptNovelty+ [4] in a wide range of problems, and was
effective in handling weights for a wide range of hard satisfiability problems. However, In recent study [7],

suffer from weight stagnation while distributing the weights when applied to large problems due to the

complexity and hardness of these problems.

As previously mentioned, experiments show that DDFW could suffer from weight stagnations during the

search steps. Among the factors that could cause such stagnation is that weights could be hold within the

same neighborhood for longer than the search required. Thus, our current investigation of weight movements in
DDFW addresses the question of whether there are an alternative method to handle weights to further

achieve gains in the domain of SAT. In particular, we are interested in multi level weight distribution schemes,

that exploit weighted clauses in multi levels fashion so that the problem of weight stagnation is prevented or
dealt with when it occurs. The multi level weight distribution approach offers the advantage of exploiting

weights that are indirectly connected. Thus, the limitation of weight distribution from within the same

neighboring area where clauses share a variable or variables is avoided. Such an approach offers the a
variation of weight distribution from other neighboring areas within the search domain. As a result the high

degree of deterministic weight distribution from within the same neighboring area is relaxed without

compromising the benefits gained by the original approach of one level weight distribution.

In the next section we provide a general background on the evolution of clause weighting algorithms. Then,

provide further details of weights movements within the first level neighboring area (which is implemented
in DDFW). We then introduce the mulLWD in more details, and provide an experimental comparison

between mulLWD and its ancestor DDFW and some other clause weighting algorithms. Consequently, a

significant category of problems is identified where mulLWD has remarkably better performance. Then we

conclude our work by recommendations for the use and further improvements of multi level weight distribution
local search for SAT.

2. Clause Weighting for SAT

In general, clause weighting local search heuristics for SAT repeatedly follow the same scheme. That is

they start with a simple process of initializing randomly all literals of a given problem (given a boolean value for

each literal ∈ 0, 1), and all clauses get the same amount of weight at the beginning of the process. Then the

search starts by changing the value of a literal (from 0 to 1 or vice versa). This changing of literal value must

cause a reduction of the overall number of false clauses count that appear in the current stage of the search.
When there are no literals that can cause the reduction of the sum of false clauses count by changing its boolean

value, the search at this point increase the weights of all unsatisfied clauses. The search continue and

periodically reduce the weights on the weighted satisfied clauses.

Basically there are two main methods on deciding on when to adjust the weights. This decision is a key

factor that distinguishes the weighting heuristics from each others. Some heuristics use a multiplicative method
such as SAPS. Some other heuristics adjust weights additively such as PAWS, DLM, DDFW, and BalancedZ.

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 4, Issue 1 (2017) ISSN 2349-1469 EISSN 2349-1477

https://doi.org/10.15242/IJCCIE.ER0317105 191

2.1. Multi Level Weight Distribution
MulLWD heuristic uses the two uniquely implemented ideas that are built in DDFW. Firstly, both

algorithms evenly distributes fixed amount of weights across all clauses at the beginning of the search process,

escaping from the traps of local minima is performed by the weight transfer from satisfied clauses to

unsatisfied (false clauses). The state-of-the-art-idea is that the weights increments and decrements are done in
implicitly one step. That is, a neighboring satisfied clause will donate its weights (because weights are

no longer needed since the clause has been satisfied) to unsatisfied (false) clause. In other words, weight

normalization (decrements of satisfied clauses) is a sub-function of the weight increment step. This idea

crucially important in the weight increment process as it waive the need of deciding at which point weights
reduction should be performed. Other local search heuristics such PAWS, SAPS, BalancedZ, SDF, ESG, DLM,

all use a separate step to decide at which point weights normalization (weights decrements) is performed.

This separate step has been proven costly and it needs separate parameters tuning which consume tremendous
amount of time. Second and more original idea is the exploitation of false clause neighboring area in order to

search for weights donors.

Aside from the similarities between mulLWD and DDFW, mulLWD differ significantly in the way it picks

a neighboring satisfied clause to be a weight donor to a false clause as discusses in the next subsection.

2.2. Exploiting 2
nd

 Level Neighborhood Structure

A neighboring clause cs to clause cu is defined as: if there exists at leas a literal lx that is ∈ cs,

and ∈ cu. Furthermore, we term lx a same sign literal in all clauses that lx occur in, which in turn

implies that its negation literal is −lx . As a result, we term any two clauses ∈ F , ci and cj neighbors if

literal lx is ∈ clause ci and clause cj where i = j. Consequently, if clause ci is false it means all literals

lix ∈ clause ci evaluate to false (the boolean value of all literals ∈ clause ci = 0, or 1 if the literal is

negated). Thus, flipping literal lx (the boolean value of literal cix) will help clause cix and all its false

neighbors. On the other hand, if clause cn has a literal ¬lx and its current value is 0 then if we change the

boolean value of literal lx to 1 will make literal ¬lx evaluate to 0. Assuming that literal ¬lx was the

only literal in clause cn that evaluates to 1 before changing its value then clause cn will be damaged by

changing the value of literal lx from 0 to 1 see Fig 1. Basically, if literal lx occur in clause ci , and

clause

Fig. 1. illustration of neighboring areas of clauses

 S

∈ S are a second level neighboring clauses of clause ci . The second level neighborhood area or

(” g g ”), m v g p v v g d
structure. To clarify our observation we reported in Fig 2 the weights movements within neighboring clauses.

These weights movement are deterministic moves. Now, in case there is no deterministic move that could be

taken, a random move (transferring weights in random fashion from outside the neighboring areas) is chosen. As
illustrated in Fig 2, the random moves occur very frequently while searching for a solution. We assumed two

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 4, Issue 1 (2017) ISSN 2349-1469 EISSN 2349-1477

https://doi.org/10.15242/IJCCIE.ER0317105 192

scenarios that may cause the search to pick a random clause, to be weight donor, from outside a false clause

neighboring area:

• the neighboring clauses are all false.

• the neighboring clauses do not have enough weights to be transferred to their false neighbor.

We experimentally tested the first scenario, the results indicated that it is very unlikely to be the case so we

excluded it. On the other hand, scenario two occurred in all the experiments that were conducted on our

problem set as illustrated in Fig 3. The Figure shows the number of first level weight movements, the
second level weights movements and the random weight movements. From that we assumed that if weights to

be transferred from a second level neighboring area will improve the performance of the search process,

which was the case as discussed in the section III.

Fig. 2. illustration of search moves: random moves and one level deterministic moves

3. Experimental evaluation and analysis

As mentioned in the previous section, we empirically tested whether searching for a satisfying assignment

that could evaluate F to true may be faced with the second scenario at which there is no single satisfied

clause that is willing to give weights to its neighboring false clauses. Given the fact that the search would pick
a clause randomly only when the satisfied neighboring clauses of a false clause do not have enough weights to

donate (see algorithm 1), we designed our experiments to firstly report whether the weights movements are

deterministic (first level weight distribution) or random (from outside the neighboring area of a false clause) as

Fig. 3. illustration of search moves: random moves and multi level deterministic moves

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 4, Issue 1 (2017) ISSN 2349-1469 EISSN 2349-1477

https://doi.org/10.15242/IJCCIE.ER0317105 193

Algorithm 1 mulLWD(F)

1: assign a boolean value ∈ 0, 1 to each literal in F ;

2: set the weight of clauses in F = Winit ;

3: while solution is not found and not timeout do

4: find and return a list L of literals causing the greatest reduction in

weighted cost ∆w when flipped;

5: if (∆w < 0) or (∆w = 0) then

6: flip a literal randomly in L;

7: else

8: for each false clause cf do

9: find a satisfied clause neighbouring clause ck with the highest

weight wk ;

10: if CK found then

11: move a weight of one from ck to cf ;

12: else

13: select a satisfied same sign neighbour of neighbouring

clause ck with maximum weight wk ;

14: end if

15: if wk < I nit then

16: randomly select a clause ck with weight wk ≥ Winit ;

17: end if

18: if wk >= Winit then

19: transfer a weight of one from ck to cf ;

20: end if

21: end for

22: end if

23: end while

illustrated in Table I.

The random moves reported in Table I confirm that, in many search steps random moves is chosen which
support our assumption. For instance, we have noticed that in all of our problem set, random occurs very

frequently. The ratio of random moves to deterministic moves varies depending on the size of the problem,

and in some cases the problem complexity. For instance, problem ais10 random moves count was 11,437,
while the search picked a neighboring satisfied clause in 928,457, which is a ratio of almost 82% of the

over all weights moves. That implies, the search had to pick a satisfied clause from outside the neighbouring

area of a false clause with a ration of 18%. This was also the case with small to medium sized problems. For

the larger problems, we can see the number of random weight moves is much less. This is due to the fact that,
large problems have much more clauses and connectivity than smaller problems, therefore the search in

most cases would find a neighbouring satisfied clause in the neighbourhood of a false clause, so no random

moves is selected. This is clearly appear in the case of problem uni-k6-r43.37-v135.

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 4, Issue 1 (2017) ISSN 2349-1469 EISSN 2349-1477

https://doi.org/10.15242/IJCCIE.ER0317105 194

 Based on the above observation, we designed the next experimental phase at which we ran the

first level weight distribution algorithm (DDFW), the multi level weight distribution (mulLWD) and we have

also included in our runs BlanacedZ. BalansedZ starts with generating a random instantiation of the given
problem, all the weights of the clauses are assigned a value of one nit of weight. Then, the search

starts with a target of reaching a zero value of the sum of weights of the unsatisfied clauses. The score

of a variable is the amount of weights of the unsatisfied clauses reduction, if the variable is flipped. If after
flipping a variable, the weights of the unsatisfied clauses is not zero then BalancedZ flip a literal that

will cause the major reduction, if no such variable is found then the variable with the highest score is flipped.

If no variable is found a random flip is chosen that is least recently flipped. Balancedz algorithm was the
winner the gold medal of The International SAT solver competition (http”//www.satcompetition.org/) in the

year 2014. The results are reported in Table II.

Overall, the problem set is designed to show how mulLWD compares in absolute terms to the other

algorithms and to examine the relative effect of the multi level weight distribution mechanism on different
problem classes. For this reason we also include the results for DDFW. All experiments were performed on

a iMAC machine with i5 multiCore 2.5. GHz CPU and 8GB memory. Cut-offs for the various algorithms

were set as follows: for the three algorithms, DDFW, BalancedZ and mulLWD the cutoff was set 50,000,000
on all the problem set. All the algorithms were allowed 100 tries on each problem. For each run the time

and % of solution, if found, is reported.

Overall we can conclude that the addition of a multi level weight distribution has shown a

significant enhancements over the first level weight distribution over the entire range of the problem sets we
have considered (except for the logistics problem where DDFW and mulLWD performed similarly). on some

problems mulLWD performed better by an order of two as the case with ais10, f 800 − hard and uf 400.

The strongest dominance was observed on the f 1600 − hardwhere mulLwd performed better by an order of
magni- tude. Also, mulLWD was twice better than DDFW on f lat200 − hard and unif − k6 − r43.37 −

v135. The mulLWD also was superior to BalancedZ on 70% of the runs. It performed twice better on uf

400 and the strongest performance was observed on the bw−c,bw−d, logistics, f lat200, g125.18, unif − k6 −
r43.37 − v130 and unif − k6 − r43.37 − v135. On the other hand, BalancedZ performed better than

DDFW and mulLwd on the problems ais10, f 800 − hard, and f 1600 – hard.

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 4, Issue 1 (2017) ISSN 2349-1469 EISSN 2349-1477

https://doi.org/10.15242/IJCCIE.ER0317105 195

http://www.satcompetition.org/

4. Acknowledgements

The authors would like to acknowledge the financial support of the Scientific Research Committee at Petra

University. Also we would like to thank all faculty members of the Information Technology faculty who

contributed directly and indirectly to this work.

5. References

[1] S. C , K. S , d Q. C , “EWLS: A m m m v v ,” P d g T -

Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010, 2010.

[2] B. C d K. I m , “Add g ,” P d g 13 AAAI, 1996, pp. 332–337.

[3] J. F k, “L g - m g GSAT,” Proceedings of 15th IJCAI, 1997, pp. 384–389.

[4] H. H , “A d p v m m W kSAT,” Proceedings of 19th AAAI, 2002, pp. 655–660.

[5] H. Hoos and T. Stulze, Stochastic Local Search. Cambridge, Massachusetts: Morgan Kaufmann, 2005.

[6] F. Hu , D. T mpk , d H. H , “S g d P Sm g: E d m SAT,”

in Pro- ceedings of 8th CP, 2002, pp. 233–248.

[7] A. I , “W g g d m ,” P d g 3 d I nal Conference on

Artificial Intelligence and Applications AIAP, 2016, pp. 79–86.

https://doi.org/10.5121/csit.2016.60607

[8] A. I , J. T , A. S , d D. N. P m, “N g - bourhood clause weight redistribution in local search for

SAT,” P d g 11 CP, 2005, pp. 772 – 776.

[9] C. L , C. H g, d R. X , “B d d v : d m ,” P .

of SAT Competition 2013, Solver description, pp. 10–11, 2013.

[10] P. M , “T B k m d p g m m m ,” P dings of 11th AAAI, 1993, pp. 40–45.

[11] S. R , M. H m , d C. G , “A pp v v ,” KI 2007: Adv

in Artificial Intelligence, 30th Annual German Conference on AI, KI 2007, Osnabrück, Germany, September 10-

13, 2007, Proceedings, 2007, pp. 412–426.

https://doi.org/10.1007/978-3-540-74565-5_31

[12] J. T , D. N. P m, S. B , d V. F J ., “Add v v m p v g g SAT,”
Proceedings of 19th AAAI, 2004, pp. 191–196.

[13] Z. W d B. W , “A g -search strategy in discrete Lagrangian methods for solving hard satisfiability

p m ,” P d g 17 AAAI, 2000, pp. 310–315.

Abdelraouf M. Ishtaiwi Abdelraouf Ishtaiwi received the M.S degree (in 2001) & Ph.D. degree (in 2008)
both in Information & Com- munication Technology from Griffith Univer- sity, Brisbane, Australia.
Currently, he is an Assistant Professor at University of Petra in Amman, Jordan. His interests are in
artificial intelligence, distributed systems & handling BigData

Marco J. Baron Marco J. Baron is re- searcher at UNITEC University from Bogota- Colombia. He
was born in Duitama Colom- bia. His works focused on machine learning, semantic web and knowledge
discovery. He hold a Ph.D. in Strategic and Management technology.

Ghassan F. Issa Ghassan Farid Issa is the Dean of Information Technology Faculty at University of
Petra in Amman, Jordan. He re- ceived his BS degree in Electrical engineering from University of Toledo
in 1983, and the BS in Computer engineering from Trine Uni- versity, Indiana in 1984. Ghassan Issa
received his M.S and PhD in Computer Science from Old Dominion University, Norfolk Virginia in 1987

and 1992.

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 4, Issue 1 (2017) ISSN 2349-1469 EISSN 2349-1477

https://doi.org/10.15242/IJCCIE.ER0317105 196

https://doi.org/10.5121/csit.2016.60607
https://doi.org/10.5121/csit.2016.60607
https://doi.org/10.5121/csit.2016.60607
https://doi.org/10.1007/978-3-540-74565-5_31
https://doi.org/10.1007/978-3-540-74565-5_31
https://doi.org/10.1007/978-3-540-74565-5_31
https://doi.org/10.1007/978-3-540-74565-5_31

