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Abstract: In recent years, dynamic clause weighting stochastic local search algorithms have emerged as the-

state-of-the-art for solving satisfiability problems. In our study we experimentally investigated the weights 
behaviors and movements during searching for satisfiability. Firstly, We show that, second level neighboring 

clauses could be the culprit of causing the delay during the search. Secondly, we developed and experimentally 

investigated a new heuristic for enhancing Dynamic Local Search known as Multi Level Weight distribution 

(mulLWD). Our new heuristic is divided into two main phases. Phase one is to distribute weights within the same 

neighboring area. When phase one is no longer effective, phase two take place in which the second level 

neighboring area is exploited and its weights are used within the weight distribution process. 

To test our new heuristic, we conducted a detailed experimental study, comparing mulLWD with one of the 

leading clause weighting algorithm: Divide and Distribute Fixed Weight (DDFW). Experimental results showed 

that mulLWD heuristic has significantly better performance than DDFW (of up to an order of magnitude). This 

enhancement indicates that the multi level weight distribution is the key to further exploitation of local search 

SAT structures. Moreover, mulLWD could be easily generalized to be used with any dynamic local search 

weighting heuristic with some minor modifications 
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1. Introduction  

The boolean satisfiability problems (also known as propositional satisfiability or SAT for short) are very 

crucial to many areas in computer science and aritficail intelligence.  Thus,  to  find  a  complete  assignment  to 
a SAT problem has much deep signification. In our research we consider propositional conjunctive normal form 

formulas (CNF): F = ∧m ∨n lmn  in which each lmn  is a literal (boolean variable or its negation), and each 

disjunct ∨n lmn is a clause. The task of any given search algorithm is to find a complete assignment that 

satisfies F . This task is beyond the reach of systematic search algorithms except for a limited small sized 

problems  as  SAT  problems  is  NP  complete.  On  the other hand, almost any simple stochastic local search 
(SLS) method could successfully solve a broad range of larger and challenging problems [5]. 

Since the development of the first SLS weighting algorithm for SAT, namely the Breakout heuristic [10], 
tries   were   made   to   enhance   the   performance   of local search techniques ([2], [3]). However, the 

performance of these algorithms remained weak when compared to non-weighting SLS techniques. Which 

remained  the  case  until  the  occurrence  of  Dynamic Local  Search  algorithms  (DLS)  such  as  DLM  [13], 
SAPS [6], PAWS [12], DDFW [8] and more recently BalancedZ [9]. 

DLS algorithms depend on the use of weights to alter the search space in order to escape from local minima 
(or in some heuristics could prevent encountering local min- ima). Interestingly, the most successful DLS 

algorithms (i.e. DLM, SAPS, PAWS, EWS [1], COVER   [11], DDFW,  and  recently,  and  BalancedZ  [9])  

follow  the same underlying platform at which they increase weights of false clauses when the search get into 
local minima, then weights are reduced based on scoring functions that are calculated during the search. For 

instance, the scoring function used with most of DLS algorithms is as follows 

score = M akes – Breaks                                                      (1) 

where the Makes is the number of clauses that will become  true  when  literal  lmn  flipped  (to  true  if  its 

current value  is  false  or  to  false  if  its  current value is true) and the Breaks is the number of clauses 

that will become false when lmn is flipped. Except for the probSAT algorithm which does not use weights to 
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alter the search space but it depends on the score of the number of clauses that will become false (breaks) when 

a literal lmn is flipped while in local minimum. 

This study has emerged out of studying an algorithm called DDFW (Divide and Distribute Fixed Weights) 
which in turn, evolved out of Pure Additive Weighting Scheme  (PAWS).  PAWS  retain  the  method  of 

periodically  smoothing  weights  after  a   number  of weight increments with a difference that it uses an 

incremental  function  rather  a  multiplicative  function as in Scaling and Probabilistic Smoothing (SAPS). 
It is worth mentioning that another methods older than PAWS used additive instead of multiplicative weight 

adjustment called DLM. The difference between PAWS and  DLM  is  that  PAWS  has  one  parameter  

instead of 27 parameters (in the case of DLM it contains 27 parameters but only three need tuning) of DLM. 
Also, PAWS utilize a random flat moves. DDFW also while it retaining the additive weighting framework 

used by PAWS, it has a unique characteristic of combining the two main functions of weight adjustments in 

PAWS (weights increment, and weight decrements) into one function. Also DDFW is fully adaptive method and 

is a domain independent method that requires no parameter tuning. 

DDFW was shown to outperform PAWS, SAPS, AdaptNovelty+   [4] in a wide range of problems, and was 
effective in handling weights for a wide range of hard satisfiability problems. However, In recent study [7],  

suffer  from  weight  stagnation  while  distributing the weights when applied to large problems due to the 

complexity and hardness of these problems. 

As previously mentioned, experiments show that DDFW  could  suffer  from  weight  stagnations  during the 

search steps. Among the factors that could cause such  stagnation is  that  weights could  be  hold  within the 

same neighborhood for longer than the search required. Thus, our current investigation of weight movements in 
DDFW addresses the question of whether there  are  an  alternative  method  to  handle  weights to further 

achieve gains in the domain of SAT. In particular, we are interested in multi level weight distribution schemes, 

that exploit weighted clauses in multi levels fashion so that the problem of weight stagnation is prevented or 
dealt with when it occurs. The  multi  level  weight  distribution  approach  offers the advantage of exploiting 

weights that are indirectly connected. Thus, the limitation of weight distribution from within the same 

neighboring area where clauses share  a  variable  or  variables  is  avoided.  Such  an approach offers the a 
variation of weight distribution from other neighboring areas within the search domain. As a result the high 

degree of deterministic weight distribution  from  within  the  same  neighboring  area is  relaxed  without  

compromising  the  benefits  gained by the original approach of one level weight distribution. 

In the next section we provide a general background on the evolution of clause weighting algorithms. Then, 

provide  further  details  of  weights  movements  within the first level neighboring area (which is implemented 
in DDFW). We then introduce the mulLWD in more details,  and  provide  an  experimental  comparison 

between mulLWD and its ancestor DDFW and some other clause weighting algorithms. Consequently, a 

significant category of problems is identified where mulLWD has remarkably better performance. Then we 

conclude our work by recommendations for the use and further improvements of multi level weight distribution 
local search for SAT. 

2. Clause Weighting for SAT 

In  general, clause weighting local search heuristics for  SAT repeatedly follow the  same scheme. That is 

they start with a simple process of initializing randomly all literals of a given problem (given a boolean value for 

each literal ∈ 0, 1), and all clauses get the same amount of weight at the beginning of the process. Then the 

search starts by changing the value of a literal (from 0  to  1  or  vice versa). This changing of  literal value must 

cause a reduction of the overall number of false clauses count that appear in the current stage of the search. 
When there are no literals that can cause the reduction of the sum of false clauses count by changing its boolean 

value, the search at this point increase the weights of all unsatisfied clauses. The search continue and 

periodically reduce the weights on the weighted satisfied clauses. 

Basically there are two main methods on deciding on when to adjust the weights. This decision is a key 

factor that distinguishes the weighting heuristics from each others. Some heuristics use a multiplicative method 
such as SAPS. Some other heuristics adjust weights additively such as PAWS, DLM, DDFW, and BalancedZ. 
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2.1. Multi Level Weight Distribution 
MulLWD heuristic uses the two uniquely implemented ideas that are built in DDFW. Firstly, both 

algorithms evenly distributes fixed amount of weights across all clauses at the beginning of the search process, 

escaping from  the  traps  of  local  minima  is  performed  by  the weight  transfer  from  satisfied  clauses  to  

unsatisfied (false clauses). The state-of-the-art-idea is that the weights  increments and  decrements are  done  in 
implicitly  one  step.  That  is,  a  neighboring  satisfied clause  will  donate  its  weights  (because  weights  are 

no longer needed since the clause has been satisfied) to unsatisfied (false) clause. In other words, weight 

normalization  (decrements  of  satisfied  clauses)  is  a sub-function of the weight increment step. This idea 

crucially important in the weight increment process as it waive the need of deciding at which point weights 
reduction should be performed. Other local search heuristics such PAWS, SAPS, BalancedZ, SDF, ESG, DLM,  

all  use  a  separate  step  to  decide  at  which point weights normalization (weights decrements) is performed. 

This separate step has been proven costly and it needs separate parameters tuning which consume tremendous 
amount of time. Second and more original idea is the exploitation of false clause neighboring area in order to 

search for weights donors. 

Aside from the similarities between mulLWD and DDFW, mulLWD differ significantly in the way it picks 

a neighboring satisfied clause to be a weight donor to a false clause as discusses in the next subsection. 

2.2. Exploiting 2
nd

  Level Neighborhood Structure 

A  neighboring  clause  cs    to  clause  cu    is  defined as: if there exists at leas a literal lx  that is ∈ cs, 

and ∈ cu.  Furthermore, we term lx  a same sign literal in all clauses that lx  occur in, which in turn 

implies that its negation literal is −lx . As a result, we term any two clauses ∈ F , ci and cj  neighbors if 

literal lx is ∈ clause ci  and clause cj   where i  = j.  Consequently, if clause ci  is false it means all literals 

lix  ∈ clause ci  evaluate to false (the boolean value of all literals ∈ clause ci  = 0, or 1 if the literal is 

negated). Thus, flipping literal lx (the boolean value of literal cix ) will help clause cix and all its false 

neighbors. On the other hand, if clause cn has a literal ¬lx  and its current value is 0 then if we change the 

boolean value of literal lx  to 1 will make literal ¬lx  evaluate to 0. Assuming that literal ¬lx  was the 

only literal in clause cn  that evaluates to 1 before changing its value then clause cn  will be damaged by 

changing the value of literal lx from 0 to 1 see Fig 1. Basically, if literal lx  occur in clause ci , and 

clause 

 
Fig. 1.  illustration of neighboring areas of clauses 

 
                                                                         S                                              

∈ S are  a  second  level  neighboring  clauses  of  clause  ci . The  second  level  neighborhood  area  or  

(”   g              g    ”),   m                     v  g       p                    v          v      g       d 
structure. To clarify our observation we reported in Fig 2 the weights movements within neighboring clauses. 

These weights movement are deterministic moves. Now, in  case there is  no  deterministic move that could be 

taken, a random move (transferring weights in random fashion from outside the neighboring areas) is chosen. As 
illustrated in Fig 2, the random moves occur very frequently while searching for a solution. We assumed two  
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scenarios  that  may  cause  the  search  to  pick  a random clause, to be weight donor, from outside a false clause 

neighboring area: 

• the neighboring clauses are all false. 

• the   neighboring   clauses   do   not   have   enough weights to be transferred to their false neighbor. 
 

We experimentally tested the first scenario, the results indicated that it is very unlikely to be the case so we 

excluded it. On the other hand, scenario two occurred in all the experiments that were conducted on our 

problem set as illustrated in Fig 3. The Figure shows the number of  first  level  weight  movements,  the  
second  level weights movements and the random weight movements. From that we assumed that if weights to 

be transferred from a second level neighboring area will improve the performance of the search process, 

which was the case as discussed in the section III. 

 
Fig. 2.   illustration of search moves: random moves and one level deterministic moves 

3. Experimental evaluation and analysis 

As mentioned in the previous section, we empirically tested whether searching for a satisfying  assignment 

that could evaluate F to true may be faced with the second scenario at which there is no single satisfied 

clause that is willing to give weights to its neighboring false clauses. Given the fact that the search would pick 
a clause randomly only when the satisfied neighboring clauses of a false clause do not have enough weights to 

donate (see algorithm 1), we designed our experiments to firstly report whether the weights movements are 

deterministic (first level weight distribution) or random (from outside the neighboring area of a false clause) as 

 
 

Fig. 3.  illustration of search moves: random moves and multi level deterministic moves 
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Algorithm  1 mulLWD(F ) 

1:  assign a boolean value ∈ 0, 1 to each literal in F ; 

2:  set the weight of clauses in F = Winit ; 

3:  while solution is not found and not timeout do 

4: find and return a list L of literals causing the greatest reduction in 

weighted cost ∆w when flipped; 

5: if (∆w < 0) or (∆w = 0) then 

6: flip a literal randomly in L; 

7: else 

8: for each false clause cf   do 

9: find a satisfied clause neighbouring clause ck with the highest 

weight wk ; 

10:                if CK found then 

11:                     move a weight of one from ck to cf ; 

12:                else 

13:                     select  a  satisfied same  sign  neighbour of  neighbouring 

clause ck with maximum weight wk ; 

14:                end if 

15:                if wk < I nit then 

16:                     randomly select a clause ck with weight wk ≥ Winit ; 

17:                end if 

18:                if wk >= Winit  then 

19:                     transfer a weight of one from ck to cf ; 

20:                end if 

21:            end for 

22:       end if 

23:  end while 

 

illustrated in Table I. 

The random moves reported in Table I confirm that, in many search steps random moves is chosen which 
support our assumption. For instance, we have noticed that in all of our problem set, random occurs very 

frequently. The ratio of random moves to deterministic moves varies depending on the size of the problem, 

and in some cases the problem complexity. For instance, problem ais10 random moves count was 11,437, 
while the  search  picked  a  neighboring  satisfied  clause  in 928,457, which is a ratio of almost 82% of the 

over all weights moves. That implies, the search had to pick a satisfied clause from outside the neighbouring 

area of a false clause with a ration of 18%. This was also the case with small to medium sized problems. For 

the larger problems, we can see the number of random weight moves is much less. This is due to the fact that, 
large problems  have  much  more  clauses  and  connectivity than  smaller  problems,  therefore  the  search  in  

most cases would find a neighbouring satisfied clause in the neighbourhood of a false clause, so no random 

moves is selected. This is clearly appear in the case of problem uni-k6-r43.37-v135. 
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  Based  on  the  above  observation,  we  designed  the next  experimental  phase  at  which  we  ran  the  

first level weight distribution algorithm (DDFW), the multi level weight distribution (mulLWD) and we have 

also included in our runs BlanacedZ. BalansedZ starts with generating a random instantiation of the given 
problem, all  the  weights  of  the  clauses  are  assigned  a  value of  one  nit  of  weight.  Then,  the  search  

starts  with  a target of reaching a zero value of the sum of weights of  the  unsatisfied  clauses.  The  score  

of  a  variable is the amount of weights of the unsatisfied clauses reduction, if the variable is flipped. If after 
flipping a variable, the weights of the unsatisfied clauses is not zero then BalancedZ flip a literal that 

will cause the major reduction, if no such variable is found then the variable with the highest score is flipped. 

If no variable is found a random flip is chosen that is least recently flipped. Balancedz algorithm was the 
winner the gold medal of The International  SAT solver competition (http”//www.satcompetition.org/ ) in the 

year 2014. The results are reported in Table II. 

Overall, the problem set is designed to show how mulLWD compares in absolute terms to the other 

algorithms  and  to  examine  the  relative  effect  of  the multi level weight distribution mechanism on different 
problem classes. For this reason we also include the results  for  DDFW.  All  experiments  were  performed on 

a iMAC machine with i5 multiCore 2.5. GHz CPU and 8GB memory. Cut-offs for the various algorithms 

were set as follows: for the three algorithms, DDFW, BalancedZ and mulLWD the cutoff was set 50,000,000 
on all the problem set. All the algorithms were allowed 100 tries on each problem. For each run the time 

and % of solution, if found, is reported. 

Overall  we  can  conclude  that  the  addition  of  a multi level weight distribution has shown a 

significant enhancements  over  the  first  level weight distribution over the entire range of the problem sets we 
have considered (except for the logistics  problem where DDFW and mulLWD performed similarly). on some 

problems mulLWD performed better by an order of two as the case with ais10, f 800 − hard  and uf 400. 

The strongest dominance was observed on the f 1600 − hardwhere mulLwd performed better by an order of 
magni- tude. Also, mulLWD was twice better than DDFW on f lat200 − hard  and unif − k6 − r43.37 − 

v135. The mulLWD also was superior to BalancedZ on 70% of the runs. It performed twice better on uf 

400 and the strongest performance was observed on the bw−c,bw−d, logistics,  f lat200, g125.18, unif − k6 − 
r43.37 − v130 and unif − k6 − r43.37 − v135. On the other hand, BalancedZ performed better than 

DDFW and mulLwd on the problems ais10, f 800 − hard, and f 1600 – hard. 
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