A Review of Biogas Purification through Chemical Absorption

Ireen Maile, and Edison Muzenda

Abstract—Biogas is an alternative source of energy which is produced by anaerobic digestion (AD) of waste materials. Biogas contains 50 -70% methane and 30 -50% carbon dioxide as well as small amounts of other gases with a calorific value of about 21-24 MJ/m3. These trace components limit the usage of the biogas as they lower the calorific value of the gas and limit its commercialization. Hence, there is a need for purification and upgrading to meet specified application standards. The purification and upgrading processes can be classified into four major techniques which are absorption, adsorption, membrane separation and cryogenic separation. This review is focused on biogas enrichment through chemical absorption. This process involves amine washing with mono-, di- or tri-ethanolamine solutions, alkali washing with calcium oxide, calcium, potassium and sodium hydroxides, and synthesized ionic solutions of halide imidazolium ionic liquids. The regeneration of the spent chemicals for re-use will also be studied.

Keywords—absorption, anaerobic digestion, enrichment, purification, regeneration

I. INTRODUCTION

Biogas is a source of energy supply that is produced by digesting biodegradable organic matter in the absence of oxygen/air. It’s a clean form of energy that can be used for heat, electricity, combined heat and power (CHP) generation and fuel for vehicles. For it to be utilized effectively, purification is required to remove contaminants which reduces its calorific value. Typical raw biogas consists of about 55–65% methane (CH$_4$), 30–45% carbon dioxide (CO$_2$), traces of hydrogen sulfide (H$_2$S), fractions of water vapours and other contaminant gases [1-2].

Petrol, diesel, ethanol, biodiesel and methane are examples of fuels used in motor vehicles [3]. Biomethane has become the most preferred alternative fuel to replace of fossil derived fuels for vehicular use. The market price of upgraded biogas is nearly 20-30% lower than that of petrol. However, its use is limited since it requires vehicles to be dual-fuel which is expensive when compared to conventional ones. In addition, benefits of reducing the tax when using dual-fuel cars compared to conventional passenger cars exist [4].

Purification of biogas is influenced by the intended application. The composition of the raw biogas varies with feedstock and the variation in purification techniques required. Generally the purification techniques applied in the upgrading of biogas can be classified into: absorption (physical/chemical), adsorption, membrane separation and cryogenic separation [5-6].

The objective of this study is to explore the purification of biogas to match the standard of natural gas that can be used as vehicular fuel by chemical absorption. The study will focus on (i) amine washing using mono-, di- or tri-ethanolamine solutions (ii) alkali washing with calcium oxide, calcium, potassium and sodium hydroxides, (iii) synthesized ionic solutions of halide imidazolium ionic liquids. The regeneration of the spent chemical for commercial use for the economic viability of the processes will also be studied.

II. ABSORBENTS

Chemical absorbents are used in biogas upgrading to remove the contaminant gases. They can be used together with the other upgrading technologies to enhance the efficiency of the process. However, the disadvantage with the absorption process is the need for regenerating the spent solvent for application in the next batch. Fig. 1 shows a general picture of a chemical absorption process.

![Fig. 1 Typical chemical absorption unit [7]](http://dx.doi.org/10.15242/IIE.E1114022)

A. Amine washing

The amines that are normally used for biogas upgrading include mono-, di-, and tri-ethanolamine [1]. The amines widely used in industry for gas purification are primary mono-ethanolamine (MEA) and tertiary N-methyldiethanolamine (MDEA) [8]. These alkanolamine solvents are effective in removing acidic components such as CO$_2$ and H$_2$S normally found in natural or industrial gases. Their reaction with CO$_2$ is
exothermic and reversible [9]. The reaction mechanism between amine and CO$_2$ follows the mechanism depicted in Fig. 2 [10].

![Reaction mechanism](image)

Fig. 2 Proposed reaction sequence for the capture of carbon dioxide by liquid amine-based systems [10]

Higher concentrations of amines have higher CO$_2$ absorption capacity and that MEA is a better CO$_2$ absorbent than DEA [11 - 14].

Table I

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Has potential to completely remove H$_2$S</td>
<td>Loss of CO$_2$-removal performance</td>
</tr>
<tr>
<td>High efficiency and reaction rates compared to water scrubbing</td>
<td>Toxicological impacts for fugitive emissions</td>
</tr>
<tr>
<td>The process can operate at low pressure</td>
<td>Possible equipment corrosion</td>
</tr>
<tr>
<td>High efficiency (>99% CH$_4$)</td>
<td>High enthalpy of reaction</td>
</tr>
<tr>
<td>Cheap operation</td>
<td>Regeneration process is high energy-intensive</td>
</tr>
<tr>
<td>Regenerative</td>
<td>Make up chemical inputs needed</td>
</tr>
<tr>
<td>More CO$_2$ dissolved per unit of volume (compared to water)</td>
<td>Expensive investment</td>
</tr>
<tr>
<td>Very low CH$_4$ losses (<0.1%)</td>
<td>Decomposition and poisoning of the amine by O$_2$ or other chemicals</td>
</tr>
<tr>
<td>Precipitation of salts</td>
<td>Foaming is possible</td>
</tr>
</tbody>
</table>

B. Ionic solutions

Ionic solutions can be synthesised from commercially readily available chemicals at room temperature [11]. They are non-volatile and reversible absorbents [15] and can be classified as room temperature ionic liquids (RTIL) and task-specific ionic liquids (TSIL). Synthesis is usually done by a two-step procedure, the cation is synthesised in the first step followed by anion exchange reaction [16]. Equation (1) shows the reaction mechanism between TSIL and CO$_2$ [11, 15, 17]. Ionic liquids are non-volatile and hence they can be considered for “green synthesis” and gaseous separation [18].

![Ionic solution synthesis](image)

Classifications of the ionic liquids

Imidazolium-based ionic liquids are the widely used class of ionic liquids in CO$_2$ capture/absorption and they are further classified into conventional ionic liquids (FIL), functionalized ionic liquids (FIL), supported ionic membranes (SIM), polymerized ionic liquids (PIL), and mixtures of ionic and solvent liquids.

Conventional ionic liquids (CIL)

Conventional ionic liquids have been tested and found to have low CO$_2$ absorption capacity [15, 19]. The ionic liquids that form part of CIL include: 1-butyl-3-methyl-imidazolium hexafluoro-phosphate ([C$_8$ mim][PF$_6$]), 1-octyl-3-methylimidazoliumhexafluorophosphate ([C$_8$ mim][PF$_6$]), 1-octyl-3-methylimidazoliumtetrafluoroborate ([C$_8$ mim][BF$_4$]), 1-n-butyl-3-methylimidazoliumnitrate ([C$_6$ mim][NO$_3$]), 1-ethyl-3-methylimidazolium ethyl sulphate ([C$_2$ mim][EtSO$_3$]), and N-butylpyridiniumtetrafluoroborate ([N-bupy][BF$_4$]) [19].

Functionalized ionic liquids (FIL)

According to literature functionalized ionic liquids have a faster CO$_2$ absorption rate and a higher CO$_2$ absorption capacity [15, 19]. Conversely, they have a setback because of their high viscosity which hinders CO$_2$ absorption [19]. Functionalized ionic liquids can be synthesised through functionalizing the anion with alkaline group-NH$_2$ and attaching the functional group to the anion [15].

Supported ionic liquids membranes (SILM)

Supported liquid membrane is made of an ionic liquid used as a liquid phase of the membrane [15, 20]. Since the ionic liquid is viscous and non-volatile, it helps lengthen the life of the supported ionic liquid membrane without lessening the separation ability and selectivity. The supported ionic liquids membranes can either be based on conventional or functional ionic liquids [15]. Some of the ionic liquids used in supported ionic liquid membranes that can be synthesised include 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide ([C$_8$ mim][Tf$_2$ N]), N-aminopropyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide [C$_6$ NH$_2$ mim][Tf$_2$ N] and N-aminopropyl-3-methylimidazolium trifluoromethanesulfone [C$_6$ NH$_2$ mim][CF$_3$ SO$_3$].

Polymerized ionic liquids (PIL)

Polymeric ionic liquids were synthesised to address the shortfall of SILM when the pressure drop exceeds the liquid stabilizing forces [15]. It also reduces the absorption and desorption times. Zhao et al [15] synthesised polymers of tetraalkylammonium-based IL (poly[p-vinylbenzyltrimethylammonium tetrafluoroborate] (PVBTMA) [BF$_4$]) and reported their higher CO$_2$ sorption capacity compared to conventional ionic liquids. Bara et al [21] reported that the sorption/desorption of poly-CIL is entirely reversible in their solubility, permeability and diffusion of CO$_2$, CH$_4$ and N$_2$ measurements. CO$_2$ sorption capacities of PIL’s were found to decrease in the following order: ammonium > pyridinium > phosphinium > imidazolium, and the PILs with different anions were in the sequence of BF$_4$ > PF$_6$ > Tf$_2$ N [22-26].

Mixture solvent of ionic liquids and molecular solvents

The absorbent is synthesised by mixing ionic liquids with organic solvent or water. The combinations that were studied
in literature include: (i) ionic liquid with water or methanol, (ii) ionic liquid with alkanolamines, and (iii) ionic liquid with super-base or other organic solvents.

Table II

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contributes to process economy</td>
<td>Increase in viscosity as CO₂ is absorbed.</td>
</tr>
<tr>
<td>Contributes to process sustainability</td>
<td>Solvent losses during regeneration.</td>
</tr>
<tr>
<td>Lowers solvent inventory</td>
<td>Corrosion problems in valves due to re-circulation difficulty.</td>
</tr>
<tr>
<td>Reduces the discharge of volatile chemicals to the atmosphere</td>
<td>The solvent can be regenerated using low energy requirements.</td>
</tr>
<tr>
<td>The solvent can be regenerated using low energy requirements</td>
<td>Reasonable thermal stability.</td>
</tr>
<tr>
<td>Strong miscibility</td>
<td>Wide liquid range.</td>
</tr>
<tr>
<td>Tunability of structure and property</td>
<td></td>
</tr>
</tbody>
</table>

C. Alkali washing

Aqueous solutions of alkaline salts can be used for biogas upgrading. They are often employed in CO₂ removal. The salts that have been studied include CaO, Ca(OH)₂, NH₄OH, KOH and NaOH. The absorption process is influenced by agitation, turbulence in the liquid, gas – liquid contact time and solution concentration [27]. Figs. 3a and 3b are typical examples of bench scale setups for biogas upgrading using chemical absorbents [27]. Typical chemical absorption reactions are shown in (2) to (5).

\[
\text{CaO} + \text{H}_2\text{CO}_3 \rightarrow \text{CaCO}_3 + \text{H}_2\text{O} \quad (2)
\]

\[
\text{Ca(OH)}_2 + \text{H}_2\text{CO}_3 \rightarrow \text{CaCO}_3 + \text{H}_2\text{O} \quad (3)
\]

\[
\text{NH}_4\text{OH} + \text{H}_2\text{CO}_3 \rightarrow \text{NH}_4\text{HCO}_3 + \text{H}_2\text{O} \quad (4)
\]

\[
2\text{NH}_4\text{OH} + \text{H}_2\text{CO}_3 \rightarrow (\text{NH}_4)_2\text{CO}_3 + 2\text{H}_2\text{O} \quad (5)
\]

Table III

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>It is a cheap investment (storage tank and dosing pump)</td>
<td>Low efficiency (100-150 cm³ m⁻³).</td>
</tr>
<tr>
<td>Low electricity and heat requirements</td>
<td>Expensive operation (iron tank).</td>
</tr>
<tr>
<td>Simple operation and maintenance</td>
<td>Changes in pH temperature not beneficial for the digestion process.</td>
</tr>
<tr>
<td>Compact technique</td>
<td>Correct dosing is difficult.</td>
</tr>
<tr>
<td>H₂S not in biogas waste</td>
<td>No air in biogas.</td>
</tr>
</tbody>
</table>

D. Other chemicals used for biogas purification

Chemicals such as FeCl₃, FeCl₂ and FeSO₄ are fed into the digester, react with H₂S to form iron sulphide [28]. Alternatively, Fe₂O₃ and Fe(OH)₃ can be impregnated on a reaction bed that can either be wood chips, pellets or rust steel wool for the absorption of the H₂S [28]. In some situations, absorption solutions such as (i) diluted NaOH which reacts with the H₂S to form Na₂S or NaHS precipitate (ii) FeCl₂ which reacts with H₂S to form insoluble FeS and (iii) Fe(OH)₃ which reacts with H₂S to form Fe₂S₃ [29] maybe used.

III. Regeneration

Chemical absorption is of interest in biogas upgrading due to solvent regeneration. Regeneration potential and re-usability in the next cycle are important considerations in the selection of the chemical absorbent. Ionic liquids can be regenerated by heating at 180 °C for 3 hours [11]. Amines like MEA can be regenerated by boiling for 5 minutes [1]. CaCO₃ can be heated to 825 °C and dissociate to calcium oxide and carbon dioxide. This makes it not a preferable absorbent for commercial use due to its high intensive regeneration energy requirements. Ammonia can be easily regenerated by heating ammonia carbonates and bicarbonates to 60-80 °C for 5-10 minutes or they can be sold as fertilizers [30]. Diluted NaOH and FeCl₂ solutions pose environmental challenges as the resulting
sodium salts and Fe$_3$S$_3$ are not re-generable and causes disposal challenges. The Fe$_3$S$_3$ formed from Fe(OH)$_3$ solution can be regenerated with oxygen or air in a closed system.

IV. CONCLUSION

Production and utilization of biogas from municipal solid waste and other biodegradable material can significantly contribute to sustainable solid waste management, energy poverty reduction, disposal airspace savings, climate change mitigation and creation of green jobs. Its application as an energy source can be improved by purification. This paper reviewed the use of chemical absorbents for biogas purification and upgrading. Amines have a huge potential as absorbents since 99% process efficiency can be achieved. Furthermore, biogas amine scrubbing results in low methane losses which is highly desirable in biogas upgrading and can easily be regenerated.

ACKNOWLEDGMENT

The authors acknowledge South African National Energy Development Institute (SANEDI) and Global Excellence Scholarship (GES) for financial support. The department of Chemical Engineering at the University of Johannesburg is acknowledged for supporting this research.

REFERENCES

