
 

 

 

Abstract— A new method for forecasting non- stationary time 

series by Harmonic Analysis is developed in this paper. The process 

uses an adaptive method that assigns weights to each Fourier 

coefficients on a proportionate basis. The proposed method gives a 

better result than that obtained by the traditional Fourier series 

method. The new method shows how to tackle unstable systems in 

electrical appliances and other devices whose temperature rises with 

time. 
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I. STATEMENT OF THE PROBLEM 

 N the Fourier analysis of time series, it is assumed that the 

amplitudes of the waves hover over a mean value, DASS 

[4], DEAN
 
[5]. This is only true for a stationary time series 

but when the time series is non-stationary Fourier coefficients 

obtained will no longer have amplitudes meet the mean value 

condition and there is therefore the need to make amplitudes of 

the waves to match the movement of the trend in the non-

stationary data. Bloomfield
 
[1] said that no sinusoid can match 

oscillations that grow in amplitude. Most of observed time 

series generated by the real life world have a trend and non-

stationary. In a monotonic time series the trend is modelled as 

a function of time and filtering is used to obtain variance 

stabilization. Most of the work done in  non-stationary time 

series data are by non-parametric methods, Box and 

Jenkins[2], Parezen [15],Kendall[12].But Nagpaul [13], 

DeLurago [6], Cowpertwait [3], Stoica et al, Harold[8] and a 

host of authors who have used the parametric method. Yang 

[17] called for an extension of models that allow for time 

varying amplitudes and phases. Harmonic Analysis is 

concerned with the discovering of periodicities in a given time 

series data and is used when the data is either in tabular or 

graphical form, Harold [12] reports that it started with a paper 

published by Lagrange [13] but it was known Leonard Euler 

[14] that an analytic function could be represented by means of 

a series of sine’s, and cosines, namely, by the series 

         Yt      ,for –a ≤t ≤ a   

               (1) 
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It was Foureir [15] who showed how the constants an and bn  

could be evaluated 

II. AIM 

The aim of this paper is to derive Fourier coefficients that 

will match the nature (satisfy) stationary conditions) of the 

non-stationary data. 

III. OBJECTIVE 

The objective of this paper is therefore using an adaptive 

method to obtain  coefficients of the Fourier series that will 

make the amplitudes of the waves to be in accordance with 

trend of the time series data so as obtain a minimum squares of 

errors for fitted values. 

In order to achieve the stated aim, the following additional 

objectives will be followed through: Determine the Fourier 

coefficients ak and bk up to the sixth harmonics for the 

Traditional Method and the Adaptive method using monthly 

Air passengers data, determine the frequencies that minimize 

the Sum of Squares of Error (SSE), obtain amplitudes for 

Traditional method or stable amplitude and the Adaptive 

method or unstable system. 

The work will not be concerned with complex Fourier series 

at this stage. The monthly Air Line Passenger 1948-196p,of 

Box and Jenkins constitutes. 

IV. DATA SET AND MATERIALS 

The monthly Air Line Passenger 1948-196p,of Box and 

Jenkins constitutes the data set. Two statistical packages NCSS 

(TRAIL VERSION) and EXCEL will be employed to obtain 

results. 

V. METHODOLOGY 

Since the pioneer work of [15]
 
in 1822, when he stated that 

a function of the form: 

                                                   Y=f(t)                                  (2) 

 

Could be expressed between the limits t=0 and 

t=2  that is given in the form in 

equation (2): 

            

   (3) 
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This is for   a single valued function which is continuous, has a 

finite number but without discontinuities, where it is given that 

coefficient 

     an= cos(kt)dt         (4)
 

And  

bn = sin(kt)dt          (5) 

 

 if  the data is continuous. 

  When the data is discrete the coefficients become 

an==          (6) 

 

bn   =  1/n          (7) 

In a situation where the data is trending or is non-stationary 

we will have the form of equation below: 

    Y= f(t)  

        =     

a0+a1t+a2t
2
+a3t

3
+...+amt

m
                   

 (8) 

 

But using the 12
th

 difference method proposed by DeLurigo 

[15] we shall have 

 

Y   (9) 

 

N=1,2,3,...,N. 

Where, 

 

b= ,                    (10) 

 

Where L is the seasonal length 

 

a0 =N
-1

(                    (11) 

 

In our scheme the Fourier coefficients are obtained in this 

sequel: 

an               (12) 

 

an               (12a) 

 

bn               (13) 

 

We are working on another scheme   

 

bn           (13a) 

           
The model proposed equation thus becomes 

 

+  et               (14) 

  

Note that ao , represents the  trend which can linear or of any 

degree. 

 The fitted values can now be obtained by the equation 

ẙ             (15) 

 

We can replace equation (15) by the series 

 

             (16) 

 

Where, 

 An  =(a
2
n +b

2
n)

1/2          
     (17)  

 

and 

Ὧn =tan
-1

(an/bn)                 (18) 

 

Similarly equation (16) may be expressed as 

 

           (19) 

Where 

Ὧn =tan
-1

(-bn/an)                (20) 

 

It has been [1]cautioned about one being careful in 

computing Ὧn ,as  there  are two possible values of  Ὧn  which 

satisfy either (16) or (19). Jakubauskas et al [15] 

stated:Jakubauskas et al [15] stated: 

‘’Because the inverse tangent function only returns values in 

the interval [- , ], whenever an <  0  the modified  Ὧn =tan
-

1
(an/bn)  +    must be used to obtain a true phase angel. It 

follows that    Ὧn   €  [ ‘’  

  Shepherd   et al [16],are of the view that using the equation 

(16),                        

   gives a more 

accurate result than obtained by the superposition method 

 According to Kendall [17] the golden rule of time series 

analysis is first to plot the data. 

 Fig 1. Is the plot of the Air line while Table 1. Shows the 

Actual time series data of Air Line travellers of Box and 

Jenkins as reported in [11] 
 

TABLE I 

 AIR LINE DATA 
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Fig. 1 Graph of the  Air line passengers 1945-1960 

VI. ESTIMATING THE COEFFICIENTS OF FOURIER FUNCTION 

In the traditional Fourier series method, the constants an and 

bn, using (3), but the time dependent Fourier coefficients are 

obtained using (7).Table 2a and Table (2b) are displayed the 

coefficients from the traditional method and the time –

dependent method respectively from the Air Line data. The 

periodograms are shown in Fig.2a and Fig.2b for the 

traditional method and the adaptive method in that order. 

 
TABLE 2(A) 

FOURIER COEFFICIENTS FROM THE TRADITIONAL METHOD 

Harmonics(K) Cosine Terms(an) Sine Terms(bn) Amplitude (Ak) 

1 -38.6610 -15.8145 41.7704 

2 -4.8713 23.5088 23.8123 

3 7.8807 -3.8880 8.7840 

4 5.8122 7.3290 9.354 

5 0.5933 6.0662 6..095 

6 0.7242 - 0.7242 

 

TABLE 2(B)  

FOURIER COEFFICIENTS FROM THE ADAPTIVE METHOD 

Harmonics(K) 
Cosine 

Terms(an) 
Sine Terms(bn) 

Amplitude 

(Ak) 

1 --12.14 -7.1867 14.109 

2 -0.852 7.0789 7.123 

3 -1.445 --7.187 7.2936 

4 1.642 0.4632 1.7061 

5 1.955 0.6114 2.0481 

6 0.687 - 0.687 

 

 
Fig. 2a. Periodogram for Traditional Coefficients 

 
                          Fig.2b. Periodogram for the Adaptive Coefficients 

VII. SEASONAL AMPLITUDES 

Fig.3a shows the Amplitude for Traditional method, while 

Fig.3b is the Amplitude for the Adaptive method.  

 

 
Fig.3a Amplitude for the Traditional Method 

 

 
Fig.3b Amplitude for the Adaptive Method. 

VIII.  MODEL AND ESTIMATED MODEL EQUATION 

Using the coefficients of Table2a.,to form the models, 

following model equations were obtained: 

Estimated model for the Traditional coefficient for first 

harmonic   

Ẏt  =92.00544+2.564t -38.66*cos(.5236t) -15.8*sin(0.5236t) 

               (21) 

Estimated model for the Adaptive coefficient for first 

harmonic   
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Ẏt  =92.00544+2.564t -12.14*cos(.5236t) - 7.187*sin(0.5236t) 

               (22) 

IX. FITTED VALUES AND FITTED ERRORS 

Table 3.  Appendix 1 shows for the Traditional method, the 

Period(t)  column 1,Actual values ( Yt)  column 3,Fitted 

values(Ẏt)  column 4, Fitted Errors(et)  column 5 ,Amplitude  

column 6, squared Errors(et)
2
  column 7,First difference error 

squared (et-et-1)
2 

  column 7 and in  Z-values  column 8. 

Appendix 2 is for the Adaptive method. 

 

The forecast error (et) is given as, 

 

                   et   =Yt -ẙt                       (23) 

X.  THE SUM OF SQUARES ERRORS (SSE) OR ERROR LACK                 

OF FIT 

The sum of squares of errors is given by the equation 

 

SSE= (et
2
)                       (24) 

 

XI. ANALYSIS OF THE RESULTS 

Results obtained using our coefficients and those of Fourier 

are shown in table 3. Figure 2a. Shows the seasonal amplitudes 

obtained from using the old method of Fourier coefficients 

showing a mean level dependence and a stable system. While 

the seasonal amplitudes from new method coefficients is as 

shown in Figure 2,B. indicating a trend level ,and hence an 

unstable system. While Table 3 a summary of the fit statistics 

obtained using the Traditional coefficients method and the 

Adaptive coefficients. The Adaptive method gave a lower Sum 

of Squares of Errors than the Traditional method. 

XII. CONCLUSION 

The adaptive or new method gives a better result in the 

statistics of both fitted and forecast. 
 

TABLE IV 

FIRST 

,HARMONIC,N

=132 

New method, 

SSE=94853 

Old method, 

SSE=114525.7 

DIFFERENCE

=19673.7 

FIRST 

HARMONIC, 

N=144 

New method, 

SSE =125063 

Old method,   

SSE=150055 

DIFFERENCE 

=24992 

SECOND 

HARMNIC,            

N= 132 

New method,  

SSE =184676 

Old method, 

SSE=192260 

DIFFERNCE=

7584 

SECOND 

HARMONIC, 

N=144 

New method, 

SSE=250199.6 

Old method, 

SSE=258429.8 

DIFFERENCE

=8230.2 
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