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Abstract—The generalization of the pseudo-integration type 

transform and the pseudo-exhange formula are proved in the specials 

cases of the semirings (G,⨁,⨀), based on the special generated (⨁, 

⨀,⨂)-operators. Many results give the properties of the pseudo-

integration type transform and inverse of the pseudo-integration type 

transform ( Pseudo-Laplase Transform, Pseudo-Fourier Transform ), 

also the relations with the pseudo-integral and the classical transform. 

The results can be applied in dynamical programming and some 

differential equations. 
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I. PRELIMINARY NOTIONS 

 

HE binary operations ) ( pseudo-addition, pseudo-

multiplication) are respectively [1], [2], [7], [9] the 

functions   

      and 

     : →   

with following axioms that fulfill [8], [15], [16], [18], [20], 

[25], [26], [27], [28]: 

⊕(A.1÷A.8) (Commutative; Associative; Monotonitive; 

Continuitive; With a neutral  element denote ; Arkimedian 

property; Finiteness axiom; Properties respect to ordinary 

operations  (+,  )(Or. A., Or. M.)). 

(A.1÷ ) (Right distributive over  Positively non-

decreasing;  Pseudo-multiplication with 0; There exist a left 

unit e, (denote  e = Continuity; Commutative; 

Associative; Left distributive over  

Let  a generator  be a (CSI)  

continuous, strictly  increaing function  of the pseudo-

addition  on interval [ such  that  

   or an odd extension 

of a given generator  from  to [ .                                                                                                                          

The operations of  pseudo-substraction and pseudo- division 

were introduced by Mesiar and Ryb rik [8], [23], [25].    
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Definition 1.1 Let a function  be a generator of a pseudo-

addition  on the interval [ .   Binary operation   

and  on [  defined by the formulas:  

  

(if the expressions  and   have 

sense) is said to be pseudo-substraction and  pseudo-division 

consistent  with the pseudo-addition   [2], [5], [6], [7], [8], 

[13], [14], [15], [17], [19].   
 

Than the sistem of pseudo-arithmetical operations 

{ , ,  generated by this function is said to be a 

consistent sistem [8].  

So for  and  let  be a generator on 

[   we put [36]: 

  

 

 

 

 (With some valued undefined [36]). 

The structure (  is called a semiring 

 (  ) [1], [2], [3], 

[5], [9], [10], [15], [21], [22], [24], [27], [29].  

We will consider the very special semirings with:                                                      

G  and the 

continuous pseudo-operations )  [4], [9], [12] , [15].  

Class 1. ,  (    

                                                                                                               

,  

 Or. A. (ordinary addition).    

 Class 2. ,  (     

 

 .                                                                                                                                                                                                                                                                                                                                            

 Continuous and strictly increasing generator,                                                                                                       

Class 3. ,   (                                                                                                                       

,     

 .  

II.   -TRANSFORM ON A SEMIRING 

 - Fourier transform 

Relations between the Pseudo-Integral and 

Some Pseudo-Type Integral Transforms Based 

on Special Pseudo-Operations 
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  Let ,  ,  (  be 

 a semiring, where the pseudo-operators  are 

given by generating function . Any 

function  can be split into two parts with respect 

to   [4], [10], [11], [14], [29]: 

 

 
                                              

 

          

                                                       
 

 

                                                 
and  

   

                                          

Note: The functions and   are even 

functions and the function is  an even function. 

Definition 2.1. The Pseudo-Fourier cosine transform  

on the semiring ,  of a real measurable  

function  is: 

 

 

 
for every number  ( [4], [9], [11] if the right side exist).             

 

 

                                                                     

 

Definition 2.2. The Pseudo-Fourier sine transform  on 

the semiring ,  of  a real measurable 

function  is: 

 

 

 , 

for every real number  ( if the right side exist).     

 

  

 
                                                                                            

Integrals on the transforms are -integrals based on the 

, so the 

pseudo-Fourier cosine  and 

sine transform .                          

By the integrals pseudo-Fourier transform give us the 

following forms for two types:  

 

 
 

 .  

    

 

 
                                                                                               

    The pseudo-Frourier transform  of some real  

measurable function is expressed in terms of  and 

, as in the classical case [4], [9], [11], [14].                                                                                                                             

Definition 2.3 The Pseudo-Fourier transform   based 

on the semiring  

,   

 of  a real measurable function , for every  real 

number , is:   

  

                                      

                                        , 

or briefly  

 

 

 

 The basic properties of this  

 – type transform   

 

1. For real measurement function  , 

 and a and b some real parameters, then for 

 – type transform we obtain [4], [9], [11] 

the  pseudo-linearity property:  

 

 

              
 

 

                               

                                
 

 

                  

                  

2. For real measurement function ,   

and b some real parameters [4], [9], [11], [14] then for  
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 – type transform we obtain the pseudo-

shift property:  

 

 

                                        

                                 

                                     
 

 

                                 

                                 

                                
 

3. For real measurement function  ,  

(  real mearurable and bounded  is in sence that 

 with respect to some pseudo-metric based 

on generator )  , then for  – type 

transform we obtain the pseudo-derivative and pseudo-

convolution:  

 

 

                                      

                                        

 

 where   is pseudo-derivative by [ 2], [9], [10], [11], [13], 

[14].    

 

Theorem 2.4 The Pseudo-Fourier transform 

   based on the semiring 

,   of  real 

measurable function , for every  real number 

, is     

  

        
 

 

      .                  

 

 Inverse  pseudo-Fourier Transform 

The inverse pseudo-Fourier Transform show that the transform 

from  can be back to 

functions by inverse transformation:  

 

  

where  is the classical Fourier transform.                                                            

 

Both   and  are odd.                                                  

 

 

            
and   

 

 
 

In analogy with classical analysis is obtain the inverse 

transform  on following form: 

 

 

 

                            

 

                                                    

Lemma 2.5 If   then   is continuous. 

Lemma 2.6 Let  be   and 

. 

If   then  

 
                         

                             
 

Theorem 2.7 If  and   ,  

 then 

, 

nearly everywhere and  is continuous. 

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 1, Issue 1 (2014) ISSN 2349-1469 EISSN 2349-1477

http://dx.doi.org/10.15242/ IJCCIE.E0314215 136



 

 

Proof.  

 

 

 

. 

 

 -Laplas transform 

 

Definition 2.8   Pseudo- integral transform  of a real 

measurable function   based on the semiring 

,   of  a real 

measurable function , for every [4], [13]  real 

number , is                                        

 

 is pseudo-linear:   

 

 

                                 

                                
where 

 

                                . 

 

 

                                

                               

                                 

 i.e., the inverse of the  pseudo-linear transform is 

also pseudo-linear. 

Definition 2.9 For the  pseudo-linear transform  we 

have briefly: 

 

 

                                               
 

 

                                               
 

 

                                                 
 

 

                                              . 

Theorema 2.10 The inverse  of the  pseudo-linear 

transform is [2], [4], [9], [12],[14], [29] on the form: 

 

 

               

               
 

 

               

               
 

 

               

               
 

 

               

               
 

Theorem 2.11 If   is a pseudo-Laplase transform on 

 then exist the 

inverse of pseudo-Laplase transform  in the following form 

[1], [2], [4], [9], [10],  [12],[14], [29] 

 

 
 

                                          
 

                                              
 

                 

                                                    

                                                         

 

 

                            
                                      

III. APPLYING THE INVERSE OF THE PSEUDO-INTEGRAL 

TRANSFORM 

 

Let be   

  and  
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where  is the pseudo-convolution [1], [2], [4],[9], [10], [12], 

[14], [23],   [29]. 

We have by the pseudo-transform the formula: 

 
 

                                                            . 

Applying the inverse of the pseudo-integral transform, we 

obtain the formal solution:  
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