
  

 
Abstract—In this paper, we sharing experience on Java 

Android development by using JNI which is a Java interface to 

converge with non-Java code. Nowadays, the Android platform 

widely used for mobile devices can be applied to embedded systems. 

Therefore, Android developers around the world are creating and 

compiling Android application by using Java language which 

provided by Android SDK for embedded systems operated via 

Android platforms. However, many Android developers still 

interested to implement their application by using library from other 

programming language such as C/C++. It is the reason JNI comes in 

to the picture and plays an important role to provide an interface 

which enables the Java able to interact with libraries of others 

platform. This paper describes the difficulties faced and solutions 

when doing implementation of Android application development by 

using Java JNI.  

 

Index Terms—JNI, Android Application, NDK, native codes, 

secure algorithm, OPT code, cryptography, authentication 

I. INTRODUCTION 

Today, Tablet PC and Smartphone are become part of our 

life as these smart devices have become more powerful and 

unable to replace by other electronic items yet. The most 

popular mobile operating systems are Apple's iOS, 

Microsoft's Windows Mobile and Google's Android [1]. In 

this paper, we focus development experience on the Android 

platform which is the most famous used embedded OS 

nowadays; hence, the applications inside Android OS are 

important and widely used by the entire mobile user.  

Android provides an open development terminal which is 

Android SDK for developers writing applications that 

commonly called apps to extend the functionality of the 

devices [2]. There are currently over millions apps available 

for Android users. Android Market is the online apps store 

operates by Google. The Android applications are mostly 

written in Java by developer and controlling the device via 

Google-developed Java libraries [3]. However, mobile 

devices having a common issue which have limited storage 

and constrained battery life [4], as a result the developers 

should pay more attention to the efficiency of the program 

when they develop Android applications. It is because Java is 

slow when handling hardware resource and complex 

operation such as calculation in image processing or 

authentication process. Due to this, it is necessary to use 

native codes to overcome the memory management and 

performance constraints in Java. Therefore, Android OS is 

 
Manuscript received June 18, 2015.  

P. CHANG. Author is with Information Security Lab, MIMOS Berhad, 

Technology Park Malaysia, 57000 Kuala Lumpur, Malaysia.  

C. SEA. Author is with Information Security Lab, MIMOS Berhad, 

Technology Park Malaysia, 57000 Kuala Lumpur, Malaysia.  

H. WONG. Author is with Information Security Lab, MIMOS Berhad, 

Technology Park Malaysia, 57000 Kuala Lumpur, Malaysia.  

 

supporting JNI (Java Native Interface) with provide Android 

NDK which is a toolset that let developer embed components 

to enable native code languages is workable in Android 

applications [5]. The native code languages are such as C and 

C++. JNI is the Java Native Interface. It defines a way for 

managed code which written in the Java programming 

language to interact with native code. It's vendor-neutral, has 

support for loading code from dynamic shared libraries [6], 

and while decrease the execution times is reasonably 

efficient. 

The rest of paper we organized and structured as follows. 

In Section II, we look into background of Android and the 

JNI interface. Session III we briefly introduce related work 

which involved our design and implementation follow.  In 

Section IV, we describe the architecture design of our 

implementation by using JNI and the difficulties we faced 

through the development process.  In section V, we show the 

solution we used to solve the issues when implement JNI in 

our design. Benefits of JNI to our implementation work will 

be explained in session VI. Finally, we describe the lesson 

learnt and future work in the conclusion section. 

II. BACKGROUND 

A. Android  

Android Inc was founded in Palo Alto of California, U.S. 

by Andy Rubin, Rich miner, Nick sears and Chris White in 

2003. Later Android Inc. was acquired by Google in 2005 [7]. 

Android is a software environment built for mobile device by 

leveraging its Linux Kernel to interface with the hardware 

[8]. The Android platform is a device-independent platform 

which means that developers can create application for any 

devices such as smartphone, TV, ebook reader, gps and etc. 

Android is a software stack for mobile devices that includes 

an operating system, middleware, and key applications [9].  

The major five components of the Android operating 

system as shown in Figure 1 included Linux kernel based OS, 

a rich UI, end user application such as maps and camera, 

Android runtime which including Dalvik Virtual Machine  

and core library, also the application framework which for 

phone functions [10][11]. However, the component of the 

underlying OS are written in C or C++, end user application 

are built for Android in Java and built-in application are 

written in Java [9]. 

Android applications are written in the Java programming 

language. All the code in a single Android package file is 

considered to be one application [4]. Each application runs in 

its own Linux process and performs a different role in the 

overall application behavior, and each one can be activated 

individually. Furthermore, each managed piece of code 

executes in a virtual machine (DVM). As a result each 

application is sand-boxed from the other applications 

running at any given time. 

Java Application Development using JNI on Android 

Chang Pei Shan, Sea Chong Seak, and Wong Hon Loon 

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 2, Issue 2 (2015) ISSN 2349-1469 EISSN 2349-1477

http://dx.doi.org/10.15242/IJCCIE.IAE0915001 130



  

 

 
Fig. 1. Android Architecture 

B. Android NDK and JNI  

Android NDK was first released in June 2009 [5]. It is a 

toolchain that provide a secure environment to native library 

to be loadable inside Java development. It enables Android 

application developers to manage devices in detail beyond 

the limit of the framework and to reuse legacy code written in 

C/C++ language easily [12]. By using NDK, the Android 

applications able to improve the performance by handling 

hardware resource easier and enable to develop in higher 

speed application. Before using NDK, developers are 

required to first familiarize with Java JNI programming 

because JNI is the prerequisites of using NDK tool. 

JNI technology is the part of Java Virtual Machine (JVM) 

implementation, Java offers JNI as an interface connecting 

the world of Java to the native code [13]. It is a bridge to build 

up the communication gap between two totally different 

languages which is Java and native codes. JNI technology 

enables the procedure and the class libraries which other 

languages such as C/C++ able to access Java environment by 

using the Java method and objects. While, Java also can 

facilitates interoperate the application which involved varies 

functions and libraries of native codes. As a result, JNI allows 

developers to take advantage of the power of the Java 

platform, without having to abandon their effort in developed 

the legacy code [1]. Figure 2 indicates the relations among 

native code such as C/C++, JNI interface, Java codes and 

Android system. 

As a two-way interface, the JNI allows Java application to 

invoke native codes which is native libraries and native 

application [3], yet vice versa. When a native function is 

called, one of the arguments passed to the function is the 

JNIEnv interface pointer which is a gateway to access all the 

Java fields and predefined JNI functions. The JNIEnv 

interface pointer links to thread-local data and is organized 

like a C++ virtual function table. Therefore, JNIEnv cannot 

 
Fig. 2. Relations among Native Code, JNI Interface, Java Codes and 

Android System 
 

be shared and only accessible by Java thread. The other 

arguments passed to function when native function is called 

are the instance or static method information. 

III. RELATED WORKS 

A. The Implementation Environment 

We used Android version 4.4.2 KitKat on Eclipse platform 

4.2.1, Android Development Toolkit 23.0.3.1327240. We 

also used Android NDK r9. 

B. Implementation 

In this paper, the related works for implement the C/C++ 

libraries in Java through JNI are to develop network security 

architecture to generate an OTP code by mobile application 

for authentication purpose as shown in Figure 3. The most 

important component in the client application is the security 

functions, which implements all the security related 

operation for example hashing HMAC, key decryption and 

key encryption. The implementation should be hidden and 

kept secret. Therefore this component has to be implemented 

in C++ to prevent the mobile application from being 

reverse-engineered.  

We aimed that both Android and iOS will be using the 

same approach and share the same security function 

modules. Both JNI and security functions resides in the same 

C++ file. For reusability purpose, the security function will 

need to be separated from JNI. The JNI/Objective C++ 

should only serve as an interface between the app and C++ 

without any real security implementation.  

 
Fig. 3. Client Architecture for both Ios and Android 

 

 

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 2, Issue 2 (2015) ISSN 2349-1469 EISSN 2349-1477

http://dx.doi.org/10.15242/IJCCIE.IAE0915001 131



  

The functions of each component in our architecture are 

listed inside Table 1 as below. 
TABLE I 

FUNCTIONS OF COMPONENTS FOR IMPLEMENTATION 

Component Description 

Android Android Program Implemented In Java 

Ios Ios Program Implemented In Objective C 

Java Native Interface (JNI) A Programming Framework That 

Enables Android Java Program To Call The 

C++ Component. This Component Should 

Only Serves As An Interface Without Real 

Security Implementation To Protect The 

Design Algorithm 

Objective C++ Same As JNI But Different Programming 

Language As This Framework Is For Ios.  

Security Functions Contains Implementation Of Security 

Related Function And Operation. This 

Component Has To Be Protected. 

Crypto++ Library A Third-Party Open Source Crypto Library. 

IV. THE ARCHITECTURE DESIGN   

To confirm both Android and iOS will be using the same 

approach, we aware most of the native support on advanced 

cryptographic operations, such as elliptic curve 

cryptography, varies across mobile platforms having an 

existing C++ security function, hence, JNI is needed to 

implement for this architecture design. In Figure 4, it is the 

authentication flow by using OTP code which generated by 

client.  

 
Fig. 4.  Authentication Flow by Using OTP Code From Client 

From the figure, the client has a Java GUI which is display on 

mobile device application as the listener to wait the response from 

user. Then, once the user initiate the listener, the Java class will call 

the C++ function by using JNI and generate the OTP code with the 

C++ cryptography libraries. The Java GUI will show the OTP code 

after the process. Lastly, the OTP code is a verification ticket to 

enter inside browser to complete the authentication process.   

We have difficulties to design an architecture flow with creating 

a universal code base using a programming language which can be 

compiled in different mobile platforms to simplify the development 

lifecycle on mission-critical modules.  For different OS 

implementation, all the secure functions are written inside a C++ 

file and use its own language to create a wrapper to invoke the C++ 

functions when it is called. Therefore, the routine of wrapper using 

should be synchronized while programming language is not the 

same.  

As in Android, we were facing issue on the method to store and 

obtain some variables by through JNI function.  Normally we able to 

obtain and store IMEI parameter through Java API which is existing 

method for Java users as show in Figure 5. 

 
Fig.5. Obtain IMEI with Java API Example 

 

Lastly, problems to simplify some steps of the designs which are 

keep repeating in different scenarios. 

V. SOLUTIONS 

In our architecture design to tally the approach of iOS and 

Android, we build a hierarchy file which is a wrapper for us to 

follow the flow and function correctly. It is significant to create as 

the interface for communicates with the Crypto C++ libraries as 

show in Figure 6. Besides, we have to confirm the input and output 

parameters are defined correctly in each JNI functions.  Therefore, 

the approaches, flows, input and outputs parameter of the design 

architecture will be exactly the same for iOS and Android although 

the method to obtain the output may different inside the 

functions.  

 
Fig.6. Wrapper as Interface to Call Native Codes 

For the storing variable issue, we created a solution by 

open file to store the particular value inside and read it when 

we needed for our design as show in Figure 7.   

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 2, Issue 2 (2015) ISSN 2349-1469 EISSN 2349-1477

http://dx.doi.org/10.15242/IJCCIE.IAE0915001 132



  

 
Fig.7. Store Variables by Using File Example 

With this solution, we can simplify steps as define the 

functions in public function, hence, it allows calling by any 

JNI functions in the same architecture.  

VI. BENEFITS OF JNI   

One of the main features to use JNI in our implementation 

is because of secure key management. It is because we 

involved multiple encryption, decryption and cryptography 

formula to create the signature key which is the OTP code. 

Then, those applied security formula such as C and C++ are 

compiled directly into assembly codes which are harder to be 

reverse-engineered than Java bytecodes. 

 Also, it able to protects our security algorithm for OTP 

code generation by using JNI. This means writing 

mission-critical modules in C and C++ can provide a 

stronger defense against network attacks aiming to disclose 

the underlying application logics. 

From the development experience, we noticed native codes 

can execute in lower speed under correct usage when 

involved varies complex math calculation such as 

cryptography operations.  Besides, JNI enables our 

application to do cross-platform development which 

involved iOS and Android. This is good for reusability 

purpose which uses the existing legacy library and could not 

afford to rewrite in certain language only such as Java code. 

As a result, we not only can fully utilize the existing native 

code and in some cases increased speed of mobile apps 

development by saving the developer time. 

VII. CONCLUSION 

In this paper, we aimed to implement a security mobile 

application which involved tons of complex cryptography 

functions for authentication purpose in iOS and Android 

platform.  

At first sight, we plan to create different programming 

libraries to support different mobile platform development 

which is not the efficient way. After we research for the 

related requirement, we found out that the JNI function 

enables our implementation sharing the same native code 

libraries as cross-platform development which supports 

Android and iOS. It allows time saving in both development 

and apps execution, while still providing better performance 

in our design. Besides, by adding JNI to our implementation, 

it is adding the complexity of the security apps which become 

harder to be reversed-engineer.   

In conclusion, we recommend that Android application 

developers use the native C/C++ library through JNI function 

when the implementation requires number of memory access, 

multiple complex formula calculations and stronger defense 

to against network attack.  

ACKNOWLEDGEMENT 

This research was supported by Mr Ng Kang Siong who 

acts as our technology architecture reviewer for the network 

security design. Also, architecture programmer was 

supported and consulted by Dr Cheong Hoon Sin in our 

implementation for both iOS and Android platforms. 

REFERENCES  

[1] Jae Kyu Lee, “Android Programming Techniques for Improving 

Performance”, Awareness Science and Technology (iCAST) Internation 

Conf, pp386-389, Dalian, 2011 

[2] Yeong-Jun Kim, “Benchmarking Java application using JNI and native C 

application on Android”, in Control, Automation and Systems (ICCAS), 

Jeju Korea, pp 284 – 288, 2012 

[3] Ki-Cheol Son, “The method of android application speed up by using 

NDK”,  Awareness Science and Technology (iCAST) Internation Conf, 

pp382-385, Dalian, 2011 

[4] Yann-Hang Lee, “Efficient Java Native Interface for Android Based 

Mobile Devices”, in International Joint Conference of IEEE TrustCom, 

pp 1202-1209, 2011 

http://dx.doi.org/10.1109/trustcom.2011.162 

[5] Sangchul Lee, “Evaluating performance of Android platform using native 

C for embedded systems”, Control Automation and Systems (ICCAS), 

International Conference, pp1160-1163, Gyeonggi-do, 2010 

[6] JNI Tips, http://developer.android.com/training/articles/perf-jni.html 

[7] W. FRANK ABLESON, “Android.in.Action.2”, Stamford, 2011 

[8] David Ehringer, The Dalvik Virtual Machaine Architecture, 

http://davidehringer.com/software/android/The_Dalvik_Virtual_Machin

e.pdf  

[9] Google, Android 2.3 User Guide, 

www.google.com/googlephone/AndroidUsersGuide- 2.3.pdf  

[10] Android (Operating System), http://en.wikipedia.orglwiki/Android 

(operating_system) 

[11] Android, 

http://www.engineersgarage.com/articles/what-is-android-introduction 

[12] Java Native Interface,  

http://www.cs.iastate.edu/~yingcai/cs587x/notes/jni.pdf 

[13] Android JNI/NDK, 

http://www.slideshare.net/dumura/android-jni-37395860 

 

P Chang, was born in Malaysia in 1984. She 

received a degree of Bachelor Electrical and 

Electronic Engineer from Nottingham Trent 

University in 2008.  
She has around 3 years working experiences in 

Intel Penang Design Center working as 

structural design automation engineer in VLSI 

design CAD tools and methodology application 

support require in state-of-the-art SOC 

development team.  Also, she has 2 years 

working experience in Acer Taiwan working as 

mobile software project engineer in Android 

phone production line test software development which applied Qualcomm 

CDMA chipsets and tools support. For recent years, she was back to Malaysia 

and join in MIMOS Berhad as member, to works as senior engineer which 

supporting network security platform and as a Java programmer on Android 

development 

 

 

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 2, Issue 2 (2015) ISSN 2349-1469 EISSN 2349-1477

http://dx.doi.org/10.15242/IJCCIE.IAE0915001 133

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Yeong-Jun%20Kim.QT.&newsearch=true
http://dx.doi.org/10.1109/trustcom.2011.162
http://dx.doi.org/10.1109/trustcom.2011.162
http://dx.doi.org/10.1109/trustcom.2011.162
http://dx.doi.org/10.1109/trustcom.2011.162
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5656240
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5656240
http://developer.android.com/training/articles/perf-jni.html
http://davidehringer.com/software/android/The_Dalvik_Virtual_Machine.pdf
http://davidehringer.com/software/android/The_Dalvik_Virtual_Machine.pdf
http://www.google.com/googlephone/AndroidUsersGuide-%202.3.pdf
http://en.wikipedia.orglwiki/Android
http://www.engineersgarage.com/articles/what-is-android-introduction
http://www.cs.iastate.edu/~yingcai/cs587x/notes/jni.pdf
http://www.slideshare.net/dumura/android-jni-37395860



