DVR with Artificial Intelligent Controller for Voltage Sag Mitigation

Mohamed Mohamed Khaleel, Khaled Abduesslam, Prof. Muhammad Nizam, and Dr. Inayati, ST., MT., Ph.D.

Abstract—Dynamic Voltage Restorer (DVR) is used in power distribution system to protect sensitive load in voltage disturbances. Voltage sag is one of the most important power quality problems challenging the utility industry. Voltage sags can be compensated by voltage and power injection into the distribution system. DVR is developed using Mamdani-type fuzzy inference system and Sugeno-type fuzzy inference system. They are two input and one output. Both Mamdani-type fuzzy inference system and Sugeno-type fuzzy inference system are simulated using MATLAB fuzzy logic toolbox. This paper outlines the basic difference between these two fuzzy inference system and their simulated results were compared.

Keywords—Dynamic Voltage Restorer (DVR), Mamdani-type fuzzy inference system (FIS), MATLAB, Sugeno-type fuzzy inference system (FIS), and Voltage Sag

I. INTRODUCTION

In recent years the demand for quality of electronic power has been increasing rapidly. Power quality problems has received a great attention nowadays because of their impacts on both utilities and customers[1]. There are many power quality problems such as voltage sag, voltage swell, harmonics, flickers, interruption etc. Among these, voltage sag is considered to have the most severe effect on the equipments[2]. These effects can be very burdening for customers, from minor quality variations to production downtime and equipment damage[3].

Mohamed Mohamed Khaleel is currently working toward the MSc degree in Sebelas Maret University, Central Java, Indonesia. His research interest includes Power System Analysis, Power Electronics, Power Quality, Control Systems, Simulation, FACTs and Renewable Energy. Email: lykhaleel@gmail.com

Khaled Abduesslam is currently working toward the MSc degree in Sebelas Maret University, Central Java, Indonesia. His research interest includes Power System Analysis, Power Electronics, Power Quality, Control Systems, and Renewable Energy.

Prof. Muhammad Nizam, Member of University Senate / Head of control unit UNS Ex. Power System. Energy Quality. Energy Management System. Email: Nizam_kh@ieee.org

Dr. Inayati, ST., MT., Ph.D, Chemical Engineering Department, Faculty of Engineering, Sebelas Maret University, Surakarta, Indonesia. Telp: +62271632112 (office) +62274375213 (home) +6282138248908 (mobil)
Email: inayati@fi.uns.ac.id

According to the IEEE standard, voltage sag decreases from 0.1 to 0.9 p.u in the rms voltage level at the system frequency and with duration of half cycle to 1 min[4]. Voltage swells are not considered as important as voltage sag because they are less common in distribution systems [3].

DVR is a custom power device connected to the load through a series transformer. To compensate voltage disturbances, series voltage is injected through the transformer by voltage-source converter connected to dc power source. The first DVR was installed in North Carolina, for the rug manufacturing industry. Another was installed to provide service to a large dairy food processing plant in Australia [16].

There are many different methods using to mitigate voltage sag. Using a DVR method is an effective Custom Power Device which can improve power quality, especially voltage sags [4]. The basic operating principle of DVR is to detect the voltage sag and inject the missing voltage in series transformer [2].

Artificial Intelligence techniques such as neural networks and Fuzzy Logic Controller (FLC) are getting more attention nowadays. d-q-0 technique has been proposed based on Artificial Intelligent techniques. Both Mamdani-type fuzzy inference system and Sugeno-type fuzzy inference system are two samples of methods proposed for the DVR. The advantage of these two techniques is that they use human experience. In addition, FLC appears to be the most promising due to its lower computation burden and robustness.

This paper not only introduces DVR and its operating principle, but also presents the proposed controller which is a combination of FLC and d-q-0 technique. DVR control approaches used in this paper are Mamdani-type fuzzy inference system and Sugeno-type fuzzy inference system methods. These two approaches are going to be compared to determine which approach is more robust. Then, the simulation results are going to be analyzed using MATLAB-SIMULINK to provide a comparison between the proposed and the conventional d-q-0 technique in terms of performance in voltage sag compensation.

II. MODELLING OF DVR

Among power quality problems (voltage sag and swell, harmonics), voltage sag causes the most severe disturbances. In order to overcome these disturbances, the concept of custom power devices are introduced. One of those device is
DVR, which is regarded as the most efficient and effective modern custom power device used in power distribution networks.

The function of the DVR is to inject the missing voltage in order to regulate the load voltage from any disturbance due to immediate distort of source voltage [5]. The DVR was first installed in 1996. DVR is normally installed in distribution between the supply and critical load feeder. Other DVR functions are to rapidly boost up the loadside voltage in the event of a disturbance and avoid any power disruption to that load there are various circuit topologies and control schemes [6]. DVR can also add other features like line voltage harmonics compensation, reduction of transients in voltage and fault current limitations [5].

The general configuration of DVR consists of voltage injection transformer, an output filter, an energy storage device, voltage Source Inverter (VSI), and Control system shown in Figure 1.

![Fig. 1 Structure of DVR](image)

DVR is a series connected device designed to maintain a constant RMS voltage across a sensitive load. The DVR consists of:

A. **Voltage Source Inverter (VSI)**

Voltage Source Inverter converts the DC voltage from the energy storage unit to a controllable three-phase AC voltage. The inverter switches are normally fired using a sinusoidal pulse Width Modulation scheme [7].

B. **Passive Switch**

Filters are used to convert the inverted PWM pulse waveform. This is achieved by removing the unnecessary higher harmonic compounds generated during the DC to AC conversion in the Voltage Source Inverter. Higher harmonic components distort the compensated output voltage [8].

C. **Energy Storage Unit**

It is important for energy to be stored in the DC form such as flywheels, batteries, superconducting magnetic energy storage (SMES) and super capacitors. They can be used as energy storage devices and supply the real power requirement of the system when DVR used for compensation [9].

D. **Voltage Injection Transform**

In a three-phase system, three single-phase transformer units and one-three phase transformer unit can be used inject the voltage in the proposed system [10].

E. **Control System**

The aim of the control system is to maintain constant voltage magnitude at the point where a sensitive load is connected under system disturbances [11].

III. OPERATION OF DVR

DVR dynamically injects controlled voltage in series with bus voltage through the booster transformer. The amplitudes of the injected phase voltages are controlled to eliminate the detrimental effects of the bus fault to the load voltage. The system impedance Z_{th} depends on the fault level of the load bus when the system voltage (V_{th}) drops. DVR injects a series voltage V_{DVR} through the injection transformer so that the desired load voltage magnitude V_L can be maintained. The series injected voltage on DVR can be written as [14]:

$$V_{DVR} = V_L + Z_{th} I_{th} - V_{th}$$ \hspace{0.5cm} (1)

$$I_L = \frac{(P_L + jQ_L)}{V_L}$$ \hspace{0.5cm} (2)

$V_L =$Desired load voltage magnitude
$Z_{th} =$load current
$I_L =$load current
$V_{th} =$system voltage during fault

IV. PARK'S TRANSFORMATION

DVR control employs a-b-c to d-q-0 transformation. During normal condition and symmetrical condition, the voltage will be constant and d-voltage is unity in p.u and q-voltage is zero in p.u. but during the abnormal conditions, the voltage change. After comparing d-voltage and q-voltage with the desired voltage error, d and q are generated. This error component is converted into a-b-c component using d-q-0 to a-b-c transformation. Phase locked loop (PLL) is used to generate unit sinusoidal wave in phase with main voltage. These a-b-c components are given to generate three-phase pulses using Width Modulation (PWM) technique [13].

![Fig. 2 Scheme Control d-q-0](image)
Figure 2 illustrates the basic control scheme and parameters measured for control purposes. When the supply voltage is at its normal level, DVR is controlled to reduce the losses in the DVR to a minimum voltage. When voltage sags/swells are detected, DVR will react fast and inject an AC voltage into the grid.

The d-q-0 transformation, Park’s transformation is used to control of DVR. The d-q-0 method gives the sag depth and phase shift information when the voltage sag starts and when the voltage ends. The quantities are expressed as the instantaneous space vectors. First, convert the voltage from a-b-c reference frame to d-q-0 reference.

\[
\begin{bmatrix}
V_d \\
V_q \\
V_0
\end{bmatrix} =
\begin{bmatrix}
\cos(\theta) & \cos(\theta - \frac{2\pi}{3}) & 1 \\
-sin(\theta) & -sin(\theta - \frac{2\pi}{3}) & 1 \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2}
\end{bmatrix}
\begin{bmatrix}
V_a \\
V_b \\
V_c
\end{bmatrix}
\]

Equation 1 defines the transformation from three-phase system a, b, c to d-q-0 stationary frame. In this transformation, phase A is aligned to the d axis that is in quadrature with the q-axis. The theta (\(\theta\)) is defined by the angle between phases A to the d-axis. The error signal is used as a modulation signal generating a commutation pattern for the power switches (IGBT’s) constituting the voltage source converter. [15].

V. FUZZY LOGIC CONTROLLER (FLC)

Fuzzy logic controller (FLC) was first proposed in 1965 as a way to imprecise data by Lofti Zadeh, professor at University of California. After being mostly viewed as a controversial technology for two decades, FLC has finally been accepted as an emerging technology since the late 1980s. This is largely due to a wide array of successful applications such as consumer products, industrial process control, and automotive applications.

FLC is close in spirit to human thinking and natural language than conventional logical systems FLC is a methodology representing and implementing human’s knowledge about how to control a system [17]. In general, FLC provides an inference structure enabling appropriate human reasoning capabilities. Figure 3 shows the basic configuration of FLC.

Unlike Boolean logic, FLC allows states (membership Values) between 0 or 1 [19]. The general structure of FLC is represented in Figure 4 below. FLC comprises four principal components:

- a fuzzification interface which converts input data into suitable linguistic values;
- a knowledge base which consists of data base with the necessary linguistic definitions and control rule set;
- a decision-making logic which stimulates human decision process inferring the fuzzy control action from knowledge of the control rules and linguistic variable definitions;
- a defuzzification interface which yields a non-fuzzy control action

In this paper, FLC block are used for error signal-d and error signal-q. The error is calculated from the difference between supply voltage data and reference voltage data. The error rate is the the change of error. The error can be formulated as shown in equation below:

\[
\text{Error} = V\text{ref} - V \quad (3)
\]

\[
\text{Error rate} = \text{error}(n) - \text{error}(n-1) \quad (4)
\]

Fig. 4 Fuzzy Logic Controller (FLC) Scheme

The aim of the control system is to maintain voltage magnitude at the point where a sensitive load is connected under system disturbances. The harmonics is generated in the load terminals using six pulse converters with fixed firing angle connected to the main drive non linear load which is parallel to the sensitive load. Voltage sag is created at load terminals via a three-phase fault. The above voltage problems are sensed separately and passed through the sequence analyzer. The control system of the general configuration typically consists of a voltage correction method which determines the reference voltage injected by DVR. In this paper, VSI consists of PWM with FLC.

Input consists of fuzzy error signal derived from the reference voltage. It controls the proposed DVR based on a fuzzy logic. The PWM signal generator controls the DVR inverter to generate the required injected voltage. The function of FLC is very useful since its exact mathematical model is not required. FLC system can be divided into four main functional blocks; Knowledge base, Fuzzification,
Inference mechanism and Defuzzification Rule base. In this study, a fuzzy logic based feedback controller is employed to control the voltage injection of the proposed (DVR). The implication step of FLC is used to introduce the evaluation of individual rules.

In further sections of this paper, analysis of various methods of DVR control, each resulting from innovative improvements on the existing methods will be carried out. New DVR control approaches introduced in this paper are Sugeno-type fuzzy inference system and Mamdani-type fuzzy interference system.

A. Sugeno-type FIS

Sugeno-type fuzzy inference system has better processing time since the weighted average replaced the time consuming defuzzification process than Mamdani-type fuzzy inference system. Due to the interpretable and intuitive nature of the rule base, Mamdani-type FIS is widely used in particular for decision support application. Other differences are that Mamdani-type FIS has no output membership functions whereas Sugeno-type FIS has output membership functions and Mamdani-type FIS is less flexible in system design compared to Sugeno-type FIS as latter can be integrated with ANFIS tool to optimize the outputs [18].

The knowledge base is composed of data base and rule base. Data base consists of input and output membership functions and provides information for appropriate fuzzification and defuzzification operations. The rule-base consists of a set of linguistic rules relating the fuzzified input variables to the desired control actions. Fuzzification converts a crisp input signal, the error, and error change (delta error) into fuzzified signals identified by level of membership in the fuzzy sets. The inference mechanism uses the collection of linguistic rules to convert the input conditions to fuzzified output. Finally, the defuzzification converts the fuzzy outputs to crisp control signals, which in the system acts as the changes in the control input. Input-output fuzzy consists of two inputs that error and delta_error and one output.

Fuzzy Interference System constructing processes are conducted as explained below:
1) Choose a specific type of FIS (Mamdani or sugeno)
2) Select relevant input-output variables
3) Determine the number of linguistic terms associated with each input-output variables (determine the membership function for each linguistic term)
4) Design a collections of fuzzy if-then rules.
5) Choose the defuzzification method to extract a crisp value that best represents fuzzy set.
6) Run through test suite to validate system and adjust details as required.

The applied output of the fuzzy system consists of constant variables such as NB, NS, Z, PS, PB where NB=-250, NS=-200 Z=0, PS=200, PB=250. Those variables are then converted into the fuzzy rule base as shown in the table 1.

<table>
<thead>
<tr>
<th>Error</th>
<th>N</th>
<th>Z</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>delta_error</td>
<td>NB</td>
<td>NS</td>
<td>Z</td>
</tr>
<tr>
<td>Z</td>
<td>NS</td>
<td>Z</td>
<td>PS</td>
</tr>
<tr>
<td>P</td>
<td>Z</td>
<td>PS</td>
<td>PB</td>
</tr>
</tbody>
</table>

B. Mamdani-type FIS

Mamdani-type fuzzy inference system method is widely accepted to capture expert knowledge. It allows us to describe the expertise in more intuitive and more human-like manner. However, this method entails a substantial computational burden. On the other hand, Sugeno-type fuzzy inference system method is computationally efficient and
works well with optimization and adaptive techniques, making it very attractive in control problems, particularly for dynamic non-linear systems. These adaptive techniques can be used to customize the membership functions so that fuzzy system best models the data. The most fundamental difference between Mamdani-type and Sugeno-type is the way the crisp output is generated from the fuzzy inputs. While Mamdani-type FIS uses the technique of defuzzification of a fuzzy output, Sugeno-type FIS uses weighted average to compute the crisp output. The expressive power and interpretability of Mamdani-type output is lost in the Sugeno-type since the consequents of the rules are not fuzzy [18].

![Fig. 8 Membership functions of input error](image)

![Fig. 9 Membership functions of input delta-error](image)

![Fig. 10 Membership functions of output fuzzy set](image)

Output of the Mamdani-type fuzzy inference system is linear function [-10000 10000] consisting of a fuzzy set NB, NS, Z, PS, and PB where, NB = negative big, NS = negative small, Z = zero, PS = positive small, and PB = positive large.

TABLE II	FUZZY RULES		
delta_error	N	Z	P
N	NB	NS	Z
Z	NS	Z	PS
P	Z	PS	PB

VI. DVR TEST SYSTEM

The performance of the designed DVR, as shown in Figure 13 and 14 is evaluated using Matlab/Simulink. Table 1 shows the values of parameters. DVR Test System comprises 13 kV, 50 Hz generator, feeding transmission lines through a 3-winding transformer connected in Y/Delta/Delta.

![Fig. 11 Matlab model of the DVR based on d-q-0 technique](image)

![Fig. 12 Matlab model of the DVR based on FLC(Sugeno/Mamdani)](image)

<table>
<thead>
<tr>
<th>TABLE III</th>
<th>SYSTEM PARAMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Quantities</td>
<td>Ratings</td>
</tr>
<tr>
<td>Voltage source</td>
<td>13 kV</td>
</tr>
<tr>
<td>DC Voltage source</td>
<td>5 kV</td>
</tr>
<tr>
<td>Line Frequency</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Series Transformer Turns Ratio</td>
<td>1:1</td>
</tr>
<tr>
<td>IGBT generator</td>
<td>3-arm bridge (8 pulses), 1000 Hz</td>
</tr>
<tr>
<td>Line Impedance</td>
<td>L = 0.005 H, R = 0.001 Ohm</td>
</tr>
<tr>
<td>Fault Resistances</td>
<td>1.11 Ohm</td>
</tr>
<tr>
<td>Load Resistance</td>
<td>180 Ohm</td>
</tr>
<tr>
<td>Load Inductance</td>
<td>0.1926 H</td>
</tr>
</tbody>
</table>
VII. RESULTS DISCUSSION

The result consists of the simulation of distribution network without installation of DVR and simulation on distribution network with installation of DVR systems. DVR is simulated using MATLAB SIMULINK. The voltage sags occur at the time duration of 0.4 sec.

1) Control Surfaces using FLS
 The plot is obtained after the simulation of Mamdani-type fuzzy inference system (FIS) and Sugeno-type fuzzy inference system (FIS) using MATLAB Fuzzy logic toolbox (as shown in Figures 13 and 14).

 ![Fig. 13 Control Surfaces of Mandani-type fuzzy inference system](image1)

 ![Fig. 14 Control surfaces of Sugeno-type fuzzy control](image2)

2) The Result of DVR
 DVR is simulated using MATLAB SIMULINK is used when stimulating the DVR. From this simulation, it can be concluded that the voltage sags occur for 0.4 second as shown in Figure 15 below.

 ![Fig. 15 Compensation of Sag by one-phase d-q-0 with DVR and without DVR](image3)

 The orange line indicates the occurrence of voltage sag at period of time from 0.4 p.u up to 0.8 p.u. The value of the voltage drops up to 0.14 p.u. because DVR is not installed in the grid. Meanwhile, the black line indicates the DVR installation used in the grid, injecting voltage up to 88% at single phase fault.

 ![Fig. 16. Compensation of Sag by one-phase fuzzy logic Controller (Sugeno/Mamdani) with DVR and without DVR](image4)

As seen in Figure 16, the green line shows the using Sugeno-type fuzzy inference system method when the voltage sag happens at the period of time from 0.4 up to 0.8. DVR based Sugeno-type is proven to be able to support the network by 98%. The blue line illustrates the using Mamdani-type fuzzy inference system method Mamdani-type fuzzy inference system which gives the same result as Sugeno-type fuzzy inference system. Meanwhile, the orange lines indicates when single-phase fault happens without DVR installation.

 ![Fig. 17 Compensation of Sag by one-d-q-0, fuzzy logic controller (Sugeno/Mamdani) with DVR and without DVR](image5)

As described in Figure 17, the green line illustrates that the green color indicates voltage sag occurrence at the period of time from 0.4 up to 0.8. when DVR Sugeno-type fuzzy inference system is installed. DVR based Sugeno Fuzzy is proven to be able supporting 98% network in the grid. The blue line shows that Mamdani-type fuzzy inference system installation give the same result as Sugeno-type fuzzy inference system when the voltage happens. Meanwhile, the orange line illustrates when single-phase fault happens in the grid without DVR installation. The black line describes the injected voltage using DVR based on...
A new control method

Figure 19 illustrates that both of Sugeno-type and Mamdani-type fuzzy inference system inject the same value at 96% in the grid when voltage sag happens at the period of time from 0.4 up to 0.8. In this scheme, DVR based d-q-0 technique is able to support 84% network in the grid two-phase fault.

Figure 18 illustrates that both of Sugeno-type and Mamdani-type fuzzy inference system inject the same value at 96% in the grid when voltage sag happens at the period of time from 0.4 up to 0.8. In this scheme, DVR based d-q-0 technique is able to support 80% network in the grid two-phase fault.

VIII. CONCLUSION

This paper concludes that DVR is an effective device to compensate the voltage sag in power distribution systems. In term of DVR applications, although Mamdani-type and Sugeno-type share the same functions and rules, there are some distinctions between them. The output membership functions in Sugeno-type can only be either constant or linear. The crisp output is generated in different ways for both the types. In some ways, Sugeno-type is more superior than Mamani-type as it can be integrated with neural networks and genetic algorithm or other optimization techniques.

IX. REFERENCES

Mohamed Mohamed Khaleel was born in 09-07-1988, Misrata, Libya. He is currently working toward the MSc degree in Sebelas Maret University, Central Java, Indonesia. His research interest includes Power System Analysis, Power Electronics, Power Quality, Control Systems, Renewable Energy, and Artificial Intelligence Systems. Email: lykhaleel@gmail.com

Khaled Abduesslam – M was born in 09-07-1983, Tekarkeba, Libya. He is currently working toward the MSc degree in Sebelas Maret University, Central Java, Indonesia. His research interest includes Power System Analysis, Power Electronics, Power Quality, Control Systems, and Renewable Energy.

Prof. Muhammad Nizam. M. T. ph., D MIEEE., IPM. Member of University Senate /Head of control unit UNS Ex. Power System. Power Quality. Energy Management System. Email: Nizam_kh@ieee.org

Dr. Inayati, ST., MT., ph.D Chemical Engineering Department, Faculty of Engineering, Sebelas Maret University, Surakarta, Indonesia. Telp: +62271632112 (office) Email: inayati@fi.uns.ac.id