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Abstract—Tele-robotic localization systems vary in 

implementation, but the cost of building such solutions is high. 

Therefore, utilizing such solutions in complex areas becomes a very 

difficult choice. We propose to use a low-cost localization and 

navigation solution that consists of a low cost Kinect sensor along 

with a normal laptop to control a small mobile robot. Our proposed 

solution involves remotely controlled mobile robot for navigating a 

pre-built MAP of an unknown environment. Experimental results 

confirm the success of the prototype design and implementation. 
 

Index Terms—Localization; Turtlebot 2; Kinect; ROS; Path 

Planning, Collision Avoidance. 

I. INTRODUCTION 

The main idea of sending the robot in a place were no 

human can enter, so that it can traverse the location, send the 

images and avoid obstacles by a human controlled interface 

and utilizing the depth information collected by the Kinect as 

discussed in different implementation ([1 - 4]). For example in 

a search and rescue operation this can be humans 

Tele robotics is the area of robotics concerned with the 

control of robots from a distance, mainly using wireless 

connections (like Wi-Fi, Bluetooth, the 3G/4G Networks, and 

similar), "tethered" connections, or the Internet. This will 

allow applications in the fields of search and rescue, military, 

explorations and so on. 

The main idea of sending the robot in a place were no 

human can enter, so that it can traverse the location, send the 

images and avoid obstacles by a human controlled interface 

and utilizing the depth information collected by the Kinect as 

discussed in different implementation ([1 - 4]). For example in 

a search and rescue operation this can be humans trapped in 

certain locations of a building, a rescue team can be sent later 

on to the exact location to rescue the casualties. 

Localizing within indoor environments is very important for 

task-driven indoor mobile robots. Lots of approaches to 

localization have been researched, including using laser 

scanners, vision and wireless strength, [8]. Wireless strength 

indoor localization is a good approach but requires spreading 

lots of wireless probes around the localized localization.  

Other works researched probabilistic localization techniques 

for humanoid robots by utilizing 3D representation of arbitrary 

complex environments. They also had to deal with all the 

challenges the might occur during the humanoid robot 

navigation. Such approach does not relay much on Odometry 
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information and does not require a flat world assumption, [9]. 

Another solution which does not require any additional 

infrastructure in the environment and provides 3D positioning 

and orientation data was introduced, [10]. This was inspired by 

camera-projector calibration techniques, this solution uses a 

camera to locate and track a grid pattern projected onto 

surfaces in the camera‟s field of view to determine its distance 

and orientation to multiple fixed large planes in a space, this 

solution relays on image processing which requires high CPU 

utilization. 

The main objective for this paper is to build a cost effective 

solution that can localize and navigate within a given MAP 

using low cost equipment while maintaining the collected 

information and to provide a navigation solution in both static 

and dynamic environments. 

This paper is organized as follows. Section 2 describes the 

components compromising the solution. Section 3 details the 

simultaneous localization and navigation processes work. 

Section 4 provides details on the experiments results. Finally, 

we conclude the work in Section 6. 

II. COMPONENTS OF THE SOLUTION 

This solution was proposed to provide an affordable 

working indoor localization solution that can operate in homes, 

offices and especially in environments where it is dangerous to 

send people. While there are other expensive solutions that 

might does the same work, our solution becomes very handy 

when the risk of losing the robot is very high. 

A. Robot Operating System (ROS) 

This is an open source implementation for a public operated 

system in Robotics. This creates an ecosystem where different 

components called (nodes) are interconnected through a 

computer operated network, this network is used to pass 

messages between the different nodes, these messages can be 

Odometry information, control commands, video streams or 

images, or any kind of information that two nodes or more 

need to communicate. ROS, [5], also provides a wealth of 

plugin libraries to provide different parts of robotics 

functionality, this includes tele operating libraries, localization 

and navigation techniques, the plugin‟s source code is also 

available, as ROS is an open source implementation. 

ROS requires a Linux distribution base operating system to 

operate, this provides the layer between ROS and the actual 

laptop hardware, ROS includes hardware abstractions and low 

level device controls in order to control the connected devices 

whether they are robots or sensors connected to the actual 

laptop itself. 

As ROS communicates with difference nodes and sends 
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control commands between them, time becomes a very 

important factor that requires to be synchronized between 

them, the use a Network Time Protocol (NTP) becomes vital. 

Some areas of robotics research, such as indoor robot 

navigation, have matured to the point where “out of the box” 

algorithms can work reasonably well. ROS leverages the 

algorithms implemented in projects to provide a navigation 

system. 

Although each node can be run from the command line, 

repeatedly typing the commands to launch the processes could 

get tedious. To allow for “packaged” functionality such as a 

navigation system, ROS provides tools that reads XML 

description of a graph and instantiates the graph on the cluster, 

optionally on specific hosts. 

A single Ctrl-C will gracefully close all five processes. This 

functionality can also significantly aid sharing and reuse of 

large demonstrations of integrative robotics research, as the 

set-up and teardown of large distributed systems can be easily 

replicated. 

However, a more powerful concept is a visualization 

program that uses a plugin architecture: this is done in the 

RVIZ, [6], program, which is distributed with ROS.  

Visualization panels can be dynamically instantiated to view a 

large variety of datatypes, such as images, point clouds, 

geometric primitives (such as object recognition results), 

render robot poses and trajectories, etc. Plugins can be easily 

written to display more types of data. 

 

ROS have evolved through time since the release of ROS 

1.0 in 2010, now the latest distribution is called ROS Jade 

Turtle, but for the sake of stability we decided to use ROS 

Indigo since most of the libraries are supporting the robot that 

we chose for this paper which is the Turtlebot II. 

B. Turtlebot II 

The Turtlebot II, [7], shown in Fig. 2 was built on the 

success of the original Turtlebot, it is an open robotics 

platform that consists of a motorized wheeled base that is the 

Yujin Kuboki hexa-base, on top of it is the Microsoft Kinect 

sensor that provides depth information. Video input and an 

audiometer (which is not utilized). 

Some of the main features for this robot other than it is low 

cost, is that it includes Wheel encoders, Integrated gyroscope, 

Big batteries, Bump sensors, Cliff sensors and Wheel drop 

sensors. The speed of the robot can reach up to 50 cm/s. 

The robot includes a lithium battery, which provides the 

electrical power for the robot itself, and the connected Kinect 

sensor. 

C. Client PC 

The client PC is installed with Ubuntu 14.04 and is 

connected to the Robot and the Kinect Sensor, the Kinect is 

mounted on top of the Turtlebot II; this PC collects all the 

sensor‟s information such as: 

1) Depth information received from the Microsoft Kinect 

sensor. 

2) Images and video stream received from the Kinect. 

3) Odometry information received from the Turtlebot II. 
 

ROS is installed on this PC, here we describe the 

application/handlers running on the client PC itself: 

1) Turtlebot handler (hardware driver): this is the main 

driver to connect the components of the Robot through a 

USB cable. 

2) OpenNI handler: this the driver that connects the 

Microsoft Kinect to the PC to collect its depth 

information, Video and Audio streams. 

3) Depth_to_laserscan application: this is application 

converts the Kinect's depth information into a horizontal 

„line of site‟ laser scan data, which is used later in the 

main application to detect and build the grid map. 

4) Map server: This application is used to collect the built 

grid map from the main application and sends a copy of 

the map to the workstation for viewing/saving. 

5) The Adaptive Monte Carlo Localization (AMCL) 

application: this is the main ROS application that 

processes all the sensor‟s information (Laser scan, 

Odometry) to Localize and Navigate. 

D. Workstation PC 

This PC is installed with Ubuntu 14.04 and ROS indigo. 

This PC is a remote machine that controls the Client PC, views 

the maps, saves the grid maps and view the video stream, all of 

this is done through the below components: 

 

Fig 1. The ROS Ecosystem. 
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1) ROSCORE application: this is the main ROS application 

which should run on the ROS MASTER Node, all other 

ROS commands and nodes will communicate to the ROS 

master  node to get a list of all the available nodes in the 

ROS ecosystem, so it acts as a database listing all the 

nodes and how to reach them. 

2) Tele-operating application: this is an application that 

connects to the ROS ecosystem and sends control 

commands to the Robot to coordinate its movement, this 

can be done through the keyboard or a joystick connected 

to the workstation PC. 

3) RVIZ: this is a 3D visualizer for displaying sensor data 

and state information from ROS. Using RVIZ, you can 

visualize the current configuration on a virtual model of 

the robot. You can also display live representations of 

sensor values coming over ROS Topics including camera 

data, infrared distance measurements, sonar data, and 

more, check Fig 3. 

4) Map_saver: this is an application that saves the current 

built grid map to a local file on the workstation. 

E. The Network: 

Any TCP/IP network will work for ROS as long as the 

nodes have access to the main ROS master node, which is the 

workstation PC with Ubuntu 14.04 and has ROS indigo 

installed and the ROSCORE application running, 

Name resolution is also essential for the ecosystem to 

communicate as the IP address is not enough to communicate 

and any communication is done through the host name.  

For the sake of mobility the client PC should be connected 

to either a Wireless Network Infrastructure or 3G/4G network 

that is routable to the main workstation, while the workstation 

PC can have any type of connection as long as it has the routes 

to reach the Client PC. 

Bandwidth should be taken into consideration as the real-

time video streaming from the Kinect takes around 4 Mb of 

traffic, failing to provide such bandwidth will cripple the 

solution and might lead to a disconnected robot, running the 

solution without a video stream is also possible and does 

requires almost 200 Kb to operate. 

Latency is another important factor, as the robot is tele-

operated, failing to receive control commands at the right time 

might lead to the robot hitting obstacles as the control 

commands might reach the Client PC late, latencies up to 200 

ms are found to be acceptable. 

III. NAVIGATION STACK 

The ROS navigation stack implementation [11] is based on 

continues localization and path planning, the localization is 

done through the Adaptive Monte Carlo Localization (AMCL) 

algorithm [12]. The Algorithm itself relies on the 

randomization approach to overcome the complexity of the 

problem, as it will choose arbitrary locations on the local MAP 

(called particles), these particles are then saved in a list that 

includes their X and Y coordinates and their distances from all 

the nearby boundaries and obstacles, the angle of the distances 

is also stored in the same list. 

When the Robot laser scans are received and transformed 

into distances and angels, they are compared with the data 

collected and saved earlier in the randomized particles, the  

particles with the closes readings to the Robot will be given 

a higher weights and will be chosen as possible poses for the 

Robot itself, this process will continue as the Robot is 

localized to the MAP itself. At the next iteration of the 

procedure a resampling process will be done and only particles 

with higher weights will be included in the process of 

localization, this will make the number of possible particles 

less and less with time and the Robot pose will be guessed 

correctly. The AMCL algorithm is shown in fig. 4:  

 
 

For the navigation process itself to start and before the 

 

Fig 3. The RVIZ Visualizer 
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AMCL algorithm to run, we need to manually localize the 

Robot in the RVIZ interface, this is done by setting an 

approximate location and orientation for the Robot, once that 

is done we will have to set the Goal location (Fig 5) and then 

the main navigation will start. 

 
 

The global planner [13] process starts once we select the 

Goal, the whole MAP is organized as a binary image of zeros 

and ones, this MAP should include open spaces, unknown 

areas, obstacles and the Robot itself is represented as a dot on 

the MAP. To make things easier for the navigation process 

there is an extra space that is added to each obstacle (object 

and wall) which inflates the area, this area is easily calculated 

as our Turtlebot Robot is circular in shape, this area will be 

considered part of the obstacles and the Robot should not 

touch it, the global planner process will utilize the Dijkstra‟s 

famous algorithm [14] to calculate the path from the current 

location to the Goal. 

After the path is calculated, the global planner will translate 

the path into commands that controls the Robot, these are 

acceleration and direction commands sent as ROS messages 

within the ROS ecosystem. 

While the Robot is utilizing the planned path and moving, 

the AMCL process and the sensors readings from the Robot 

are also running and updating the MAP and this is where 

simultaneous localization and mapping (SLAM) is happening 

[15] , so if a new obstacle is encountered then the global 

planner will check if this new obstacle is in the path that was 

calculated, if it is in the path then it will pause the Robot and 

recalculate a new path around this new obstacle from the 

current position to the Goal, if a new path cannot be generated 

then the Robot will a command to make a full 360 degrees turn 

in his place to explore possible changes in the environment 

and it will then try to recalculate a possible path, if no possible 

path is found then the Robot will stop and report that no 

possible path is found. 

IV. EXPERIMENTAL RESULTS 

To check the performance of the proposed solution, we ran 

the solution against multiple environments to see the output in 

different scenarios, we discuss the multiple scenarios below: 

A. Scenario I: House environment 

A Learned MAP for a normal apartment consisting of three 

bedrooms, kitchen and a living room was used in this 

experiment. The Robot was localized at first manually and was 

requested reach a Goal in a different room, the test was done 

first in a static environment and the Robot was able to reach 

the location and the orientation requested, this is illustrated in 

Fig 6. Another test was done by adding obstacles to the same 

MAP that were not available in the original MAP, again the 

results were the same and the Robot was able to maneuver 

successfully to its given Goal around the new obstacles, this is 

illustrated in Fig 7. 

Another final experiment was done to simulate a dynamic 

environment, a small kid was asked to intercept the Robot 

while it was utilizing the calculated path to its Goal, and the 

results were quite amazing as the Robot was able to maneuver 

the kids jumping in front of the Robot. 
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B. Scenario II: Office environement 

The second scenario was done in the Computer Science 

Department building, which is a typical office environment, 

the three navigation scenarios of static environment of a 

known MAP, extra obstacles added to the known MAP and a 

final experiment by adding dynamic changes while the Robot 

is moving, the results are shown in Fig 8. 

 

V. CONCLUSION 

The proposed solution provides a low cost alternative to 

existing solutions that navigates through a known MAP for 

indoor environments. Using the solution to navigate unsafe 

areas where we cannot send human personals becomes feasible 

especially when the total cost of losing the solution can be 

neglected compared to the cost of other expensive robots and 

because this solution adapts to sudden changes in the 

environment. Kinect‟s depth information quality is acceptable 

for navigating indoor global maps and avoiding obstacles in 

dynamic environments. 

As the new CPUs coming out are becoming smaller, more 

powerful, less power demanding and less expensive, we 

noticed the Raspberry PI board which can act as a normal PC, 

ROS already supports Raspberry PI but the current CPU speed 

is not suitable for our solution. Similarly, drones are becoming 

very popular and their cost are making them very attractive, 

combing a drone with the Raspberry PI and the Kinect would 

provide a perfect solution that can overlook most of the 

physical environmental difficulties that the Turtlebot cannot 

coup with, especially flat ground which is required for it to 

operate.  
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