



Abstract—Tele-robotic localization systems vary in

implementation, but the cost of building such solutions is high.

Therefore, utilizing such solutions in complex areas becomes a very

difficult choice. We propose to use a low-cost localization and

navigation solution that consists of a low cost Kinect sensor along

with a normal laptop to control a small mobile robot. Our proposed

solution involves remotely controlled mobile robot for navigating a

pre-built MAP of an unknown environment. Experimental results

confirm the success of the prototype design and implementation.

Index Terms—Localization; Turtlebot 2; Kinect; ROS; Path

Planning, Collision Avoidance.

I. INTRODUCTION

The main idea of sending the robot in a place were no

human can enter, so that it can traverse the location, send the

images and avoid obstacles by a human controlled interface

and utilizing the depth information collected by the Kinect as

discussed in different implementation ([1 - 4]). For example in

a search and rescue operation this can be humans

Tele robotics is the area of robotics concerned with the

control of robots from a distance, mainly using wireless

connections (like Wi-Fi, Bluetooth, the 3G/4G Networks, and

similar), "tethered" connections, or the Internet. This will

allow applications in the fields of search and rescue, military,

explorations and so on.

The main idea of sending the robot in a place were no

human can enter, so that it can traverse the location, send the

images and avoid obstacles by a human controlled interface

and utilizing the depth information collected by the Kinect as

discussed in different implementation ([1 - 4]). For example in

a search and rescue operation this can be humans trapped in

certain locations of a building, a rescue team can be sent later

on to the exact location to rescue the casualties.

Localizing within indoor environments is very important for

task-driven indoor mobile robots. Lots of approaches to

localization have been researched, including using laser

scanners, vision and wireless strength, [8]. Wireless strength

indoor localization is a good approach but requires spreading

lots of wireless probes around the localized localization.

Other works researched probabilistic localization techniques

for humanoid robots by utilizing 3D representation of arbitrary

complex environments. They also had to deal with all the

challenges the might occur during the humanoid robot

navigation. Such approach does not relay much on Odometry

Osama Hamzeh is a graduate student with the Department of Computer

Science, University of Sharjah, P O Box 27272, Sharjah, UAE

Ashraf Elnagar is a professor with the Department of Computer Science,

University of Sharjah, P O Box 27272, Sharjah, UAE

information and does not require a flat world assumption, [9].

Another solution which does not require any additional

infrastructure in the environment and provides 3D positioning

and orientation data was introduced, [10]. This was inspired by

camera-projector calibration techniques, this solution uses a

camera to locate and track a grid pattern projected onto

surfaces in the camera‟s field of view to determine its distance

and orientation to multiple fixed large planes in a space, this

solution relays on image processing which requires high CPU

utilization.

The main objective for this paper is to build a cost effective

solution that can localize and navigate within a given MAP

using low cost equipment while maintaining the collected

information and to provide a navigation solution in both static

and dynamic environments.

This paper is organized as follows. Section 2 describes the

components compromising the solution. Section 3 details the

simultaneous localization and navigation processes work.

Section 4 provides details on the experiments results. Finally,

we conclude the work in Section 6.

II. COMPONENTS OF THE SOLUTION

This solution was proposed to provide an affordable

working indoor localization solution that can operate in homes,

offices and especially in environments where it is dangerous to

send people. While there are other expensive solutions that

might does the same work, our solution becomes very handy

when the risk of losing the robot is very high.

A. Robot Operating System (ROS)

This is an open source implementation for a public operated

system in Robotics. This creates an ecosystem where different

components called (nodes) are interconnected through a

computer operated network, this network is used to pass

messages between the different nodes, these messages can be

Odometry information, control commands, video streams or

images, or any kind of information that two nodes or more

need to communicate. ROS, [5], also provides a wealth of

plugin libraries to provide different parts of robotics

functionality, this includes tele operating libraries, localization

and navigation techniques, the plugin‟s source code is also

available, as ROS is an open source implementation.

ROS requires a Linux distribution base operating system to

operate, this provides the layer between ROS and the actual

laptop hardware, ROS includes hardware abstractions and low

level device controls in order to control the connected devices

whether they are robots or sensors connected to the actual

laptop itself.

As ROS communicates with difference nodes and sends

Localization and Navigation of Autonomous Indoor

Mobile Robots

Osama Hamzeh, and Ashraf Elnagar

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 2, Issue 2 (2015) ISSN 2349-1469 EISSN 2349-1477

http://dx.doi.org/10.15242/IJCCIE.IAE1115202 228

control commands between them, time becomes a very

important factor that requires to be synchronized between

them, the use a Network Time Protocol (NTP) becomes vital.

Some areas of robotics research, such as indoor robot

navigation, have matured to the point where “out of the box”

algorithms can work reasonably well. ROS leverages the

algorithms implemented in projects to provide a navigation

system.

Although each node can be run from the command line,

repeatedly typing the commands to launch the processes could

get tedious. To allow for “packaged” functionality such as a

navigation system, ROS provides tools that reads XML

description of a graph and instantiates the graph on the cluster,

optionally on specific hosts.

A single Ctrl-C will gracefully close all five processes. This

functionality can also significantly aid sharing and reuse of

large demonstrations of integrative robotics research, as the

set-up and teardown of large distributed systems can be easily

replicated.

However, a more powerful concept is a visualization

program that uses a plugin architecture: this is done in the

RVIZ, [6], program, which is distributed with ROS.

Visualization panels can be dynamically instantiated to view a

large variety of datatypes, such as images, point clouds,

geometric primitives (such as object recognition results),

render robot poses and trajectories, etc. Plugins can be easily

written to display more types of data.

ROS have evolved through time since the release of ROS

1.0 in 2010, now the latest distribution is called ROS Jade

Turtle, but for the sake of stability we decided to use ROS

Indigo since most of the libraries are supporting the robot that

we chose for this paper which is the Turtlebot II.

B. Turtlebot II

The Turtlebot II, [7], shown in Fig. 2 was built on the

success of the original Turtlebot, it is an open robotics

platform that consists of a motorized wheeled base that is the

Yujin Kuboki hexa-base, on top of it is the Microsoft Kinect

sensor that provides depth information. Video input and an

audiometer (which is not utilized).

Some of the main features for this robot other than it is low

cost, is that it includes Wheel encoders, Integrated gyroscope,

Big batteries, Bump sensors, Cliff sensors and Wheel drop

sensors. The speed of the robot can reach up to 50 cm/s.

The robot includes a lithium battery, which provides the

electrical power for the robot itself, and the connected Kinect

sensor.

C. Client PC

The client PC is installed with Ubuntu 14.04 and is

connected to the Robot and the Kinect Sensor, the Kinect is

mounted on top of the Turtlebot II; this PC collects all the

sensor‟s information such as:

1) Depth information received from the Microsoft Kinect

sensor.

2) Images and video stream received from the Kinect.

3) Odometry information received from the Turtlebot II.

ROS is installed on this PC, here we describe the

application/handlers running on the client PC itself:

1) Turtlebot handler (hardware driver): this is the main

driver to connect the components of the Robot through a

USB cable.

2) OpenNI handler: this the driver that connects the

Microsoft Kinect to the PC to collect its depth

information, Video and Audio streams.

3) Depth_to_laserscan application: this is application

converts the Kinect's depth information into a horizontal

„line of site‟ laser scan data, which is used later in the

main application to detect and build the grid map.

4) Map server: This application is used to collect the built

grid map from the main application and sends a copy of

the map to the workstation for viewing/saving.

5) The Adaptive Monte Carlo Localization (AMCL)

application: this is the main ROS application that

processes all the sensor‟s information (Laser scan,

Odometry) to Localize and Navigate.

D. Workstation PC

This PC is installed with Ubuntu 14.04 and ROS indigo.

This PC is a remote machine that controls the Client PC, views

the maps, saves the grid maps and view the video stream, all of

this is done through the below components:

Fig 1. The ROS Ecosystem.

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 2, Issue 2 (2015) ISSN 2349-1469 EISSN 2349-1477

http://dx.doi.org/10.15242/IJCCIE.IAE1115202 229

1) ROSCORE application: this is the main ROS application

which should run on the ROS MASTER Node, all other

ROS commands and nodes will communicate to the ROS

master node to get a list of all the available nodes in the

ROS ecosystem, so it acts as a database listing all the

nodes and how to reach them.

2) Tele-operating application: this is an application that

connects to the ROS ecosystem and sends control

commands to the Robot to coordinate its movement, this

can be done through the keyboard or a joystick connected

to the workstation PC.

3) RVIZ: this is a 3D visualizer for displaying sensor data

and state information from ROS. Using RVIZ, you can

visualize the current configuration on a virtual model of

the robot. You can also display live representations of

sensor values coming over ROS Topics including camera

data, infrared distance measurements, sonar data, and

more, check Fig 3.

4) Map_saver: this is an application that saves the current

built grid map to a local file on the workstation.

E. The Network:

Any TCP/IP network will work for ROS as long as the

nodes have access to the main ROS master node, which is the

workstation PC with Ubuntu 14.04 and has ROS indigo

installed and the ROSCORE application running,

Name resolution is also essential for the ecosystem to

communicate as the IP address is not enough to communicate

and any communication is done through the host name.

For the sake of mobility the client PC should be connected

to either a Wireless Network Infrastructure or 3G/4G network

that is routable to the main workstation, while the workstation

PC can have any type of connection as long as it has the routes

to reach the Client PC.

Bandwidth should be taken into consideration as the real-

time video streaming from the Kinect takes around 4 Mb of

traffic, failing to provide such bandwidth will cripple the

solution and might lead to a disconnected robot, running the

solution without a video stream is also possible and does

requires almost 200 Kb to operate.

Latency is another important factor, as the robot is tele-

operated, failing to receive control commands at the right time

might lead to the robot hitting obstacles as the control

commands might reach the Client PC late, latencies up to 200

ms are found to be acceptable.

III. NAVIGATION STACK

The ROS navigation stack implementation [11] is based on

continues localization and path planning, the localization is

done through the Adaptive Monte Carlo Localization (AMCL)

algorithm [12]. The Algorithm itself relies on the

randomization approach to overcome the complexity of the

problem, as it will choose arbitrary locations on the local MAP

(called particles), these particles are then saved in a list that

includes their X and Y coordinates and their distances from all

the nearby boundaries and obstacles, the angle of the distances

is also stored in the same list.

When the Robot laser scans are received and transformed

into distances and angels, they are compared with the data

collected and saved earlier in the randomized particles, the

particles with the closes readings to the Robot will be given

a higher weights and will be chosen as possible poses for the

Robot itself, this process will continue as the Robot is

localized to the MAP itself. At the next iteration of the

procedure a resampling process will be done and only particles

with higher weights will be included in the process of

localization, this will make the number of possible particles

less and less with time and the Robot pose will be guessed

correctly. The AMCL algorithm is shown in fig. 4:

For the navigation process itself to start and before the

Fig 3. The RVIZ Visualizer

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 2, Issue 2 (2015) ISSN 2349-1469 EISSN 2349-1477

http://dx.doi.org/10.15242/IJCCIE.IAE1115202 230

AMCL algorithm to run, we need to manually localize the

Robot in the RVIZ interface, this is done by setting an

approximate location and orientation for the Robot, once that

is done we will have to set the Goal location (Fig 5) and then

the main navigation will start.

The global planner [13] process starts once we select the

Goal, the whole MAP is organized as a binary image of zeros

and ones, this MAP should include open spaces, unknown

areas, obstacles and the Robot itself is represented as a dot on

the MAP. To make things easier for the navigation process

there is an extra space that is added to each obstacle (object

and wall) which inflates the area, this area is easily calculated

as our Turtlebot Robot is circular in shape, this area will be

considered part of the obstacles and the Robot should not

touch it, the global planner process will utilize the Dijkstra‟s

famous algorithm [14] to calculate the path from the current

location to the Goal.

After the path is calculated, the global planner will translate

the path into commands that controls the Robot, these are

acceleration and direction commands sent as ROS messages

within the ROS ecosystem.

While the Robot is utilizing the planned path and moving,

the AMCL process and the sensors readings from the Robot

are also running and updating the MAP and this is where

simultaneous localization and mapping (SLAM) is happening

[15] , so if a new obstacle is encountered then the global

planner will check if this new obstacle is in the path that was

calculated, if it is in the path then it will pause the Robot and

recalculate a new path around this new obstacle from the

current position to the Goal, if a new path cannot be generated

then the Robot will a command to make a full 360 degrees turn

in his place to explore possible changes in the environment

and it will then try to recalculate a possible path, if no possible

path is found then the Robot will stop and report that no

possible path is found.

IV. EXPERIMENTAL RESULTS

To check the performance of the proposed solution, we ran

the solution against multiple environments to see the output in

different scenarios, we discuss the multiple scenarios below:

A. Scenario I: House environment

A Learned MAP for a normal apartment consisting of three

bedrooms, kitchen and a living room was used in this

experiment. The Robot was localized at first manually and was

requested reach a Goal in a different room, the test was done

first in a static environment and the Robot was able to reach

the location and the orientation requested, this is illustrated in

Fig 6. Another test was done by adding obstacles to the same

MAP that were not available in the original MAP, again the

results were the same and the Robot was able to maneuver

successfully to its given Goal around the new obstacles, this is

illustrated in Fig 7.

Another final experiment was done to simulate a dynamic

environment, a small kid was asked to intercept the Robot

while it was utilizing the calculated path to its Goal, and the

results were quite amazing as the Robot was able to maneuver

the kids jumping in front of the Robot.

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 2, Issue 2 (2015) ISSN 2349-1469 EISSN 2349-1477

http://dx.doi.org/10.15242/IJCCIE.IAE1115202 231

B. Scenario II: Office environement

The second scenario was done in the Computer Science

Department building, which is a typical office environment,

the three navigation scenarios of static environment of a

known MAP, extra obstacles added to the known MAP and a

final experiment by adding dynamic changes while the Robot

is moving, the results are shown in Fig 8.

V. CONCLUSION

The proposed solution provides a low cost alternative to

existing solutions that navigates through a known MAP for

indoor environments. Using the solution to navigate unsafe

areas where we cannot send human personals becomes feasible

especially when the total cost of losing the solution can be

neglected compared to the cost of other expensive robots and

because this solution adapts to sudden changes in the

environment. Kinect‟s depth information quality is acceptable

for navigating indoor global maps and avoiding obstacles in

dynamic environments.

As the new CPUs coming out are becoming smaller, more

powerful, less power demanding and less expensive, we

noticed the Raspberry PI board which can act as a normal PC,

ROS already supports Raspberry PI but the current CPU speed

is not suitable for our solution. Similarly, drones are becoming

very popular and their cost are making them very attractive,

combing a drone with the Raspberry PI and the Kinect would

provide a perfect solution that can overlook most of the

physical environmental difficulties that the Turtlebot cannot

coup with, especially flat ground which is required for it to

operate.

REFERENCES

[1] Erickson H.; LaValle M., Navigation among visually connected sets of

partially distinguishable landmarks, Submitted in partial fulfillment of

the requirements for the degree of Master of Science in Computer

Science in the Graduate College of the University of Illinois at Urbana-

Champaign, 2012

[2] Ganapathi V.; Plagemann C.; Koller D., Real Time Motion Capture

Using a Single Time-Of-Flight Camera , published in Computer Vision

and Pattern Recognition (CVPR), 2010 IEEE Conference Pages 755-

762

[3] Khandelwal P., A low cost ground truth detection system for RoboCup

using the Kinect. Proceedings of the RoboCup International 2011

[4] http://mirror2image.wordpress.com/2010/11/30/how-kinect-works-

stereo-triangulation/ (accessed June 2015)

[5] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R.

Wheeler, and A. Ng, ROS: an open-source robot operating system, in

ICRA Workshop on Open Source Software, 2009.

[6] http://wiki.ros.org/rviz (accessed July 2015)

[7] http://kobuki.yujinrobot.com/home-en/about/reference-

platforms/turtlebot-2/ (accessed June 2015)

[8] Joydeep Biswas and Manuela Veloso, WiFi Localization and Navigation

for Autonomous Indoor Mobile Robots, in International Conference on

Robotics and Automation, 2010.

http://dx.doi.org/10.1109/robot.2010.5509842
[9] Armin Hornungm, Kai M. Wurm Maren Bennewitz, Humanoid Robot

Localization in Complex Indoor Environments, Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), 2010.

[10] Moritz Köhler, Shwetak N. Patel, Jay W. Summet, Erich P.

Stuntebeck2, and Gregory D. Abowd, TrackSense: Infrastructure Free

Precise Indoor Positioning Using Projected Patterns, 5th International

Conference, PERVASIVE 2007, Toronto, Canada, May 13-16, 2007.

Proceedings

[11] http://wiki.ros.org/amcl (accessed August 2015)

[12] Dieter Fox , Wolfram Burgard , Frank Dellaert , Sebastian Thrun ,

Monte Carlo Localization: Efficient Position Estimation for Mobile

Robots, IN PROC. OF THE NATIONAL CONFERENCE ON

ARTIFICIAL INTELLIGENCE.

[13] http://wiki.ros.org/global_planner (accesses August 2015)

[14] https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm (accessed August

2015)

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 2, Issue 2 (2015) ISSN 2349-1469 EISSN 2349-1477

http://dx.doi.org/10.15242/IJCCIE.IAE1115202 232

http://dx.doi.org/10.1109/robot.2010.5509842
http://dx.doi.org/10.1109/robot.2010.5509842
http://dx.doi.org/10.1109/robot.2010.5509842
http://dx.doi.org/10.1109/robot.2010.5509842
http://www.iros2010.org.tw/about.php

[15] Jose Cano, Eduardo Molinos, Vijay Nagarajan, Sethu Vijayakumar,

Dynamic process migration in heterogeneous ROS-based environments,

In Proc. 17th IEEE International Conf. on Advanced Robotics (ICAR

2015), Istanbul, Turkey (2015)

http://dx.doi.org/10.1109/ICAR.2015.7251505
[16] Zhengyou Zhang, Microsoft Kinect Sensor and Its Effect, IEEE

MultiMedia, vol.19, no. 2, pp. 4-10, April-June 2012,

doi:10.1109/MMUL.2012.24

http://dx.doi.org/10.1109/MMUL.2012.24
[17] https://digitalerr0r.wordpress.com/2011/06/21/kinect-fundamentals-3-

getting-data-from-the-depth-sensor/, (accessed June 2015)

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 2, Issue 2 (2015) ISSN 2349-1469 EISSN 2349-1477

http://dx.doi.org/10.15242/IJCCIE.IAE1115202 233

http://dx.doi.org/10.1109/ICAR.2015.7251505
http://dx.doi.org/10.1109/ICAR.2015.7251505
http://dx.doi.org/10.1109/ICAR.2015.7251505
http://dx.doi.org/10.1109/ICAR.2015.7251505
http://dx.doi.org/10.1109/ICAR.2015.7251505
http://dx.doi.org/10.1109/MMUL.2012.24
http://dx.doi.org/10.1109/MMUL.2012.24
http://dx.doi.org/10.1109/MMUL.2012.24
http://dx.doi.org/10.1109/MMUL.2012.24

