



Abstract—The complexity of existing crossover operators used

in Genetic Algorithm is a critical factor that affects performance due

to its negative impact on processing time. In this paper, a new

crossover operator called Push and Pop Genes Exchange Operator

(PPX) is introduced and its performance evaluated in terms of

processing time. Results of comparative performance with six

crossover operators show that PPX performed better in terms of

processing time across various population size, with improvements

ranging from 0.6% when compared to shuffle crossover at n=100 to

24.8% when compared to the half-uniform crossover operator at

n=30. Results also show that PPX performed better with increase in

population with a maximum of 13.1% when population was

increased from 30 to 100. The results confirm that PPX improved

the performance of Genetic Algorithm by reducing the complexity

of crossover operation when compared to the existing operators.

Index Terms— Push and Pop Genes Exchange Operator,

Genetic Algorithm, Crossover operator.

I. INTRODUCTION

Genetic Algorithm (GA) is a search-based optimization

technique that uses the principles of genetics and natural

selection to find optimal or near optimal solutions for difficult

problems [1]. It is particularly useful for machine learning

applications

An important innovation made to GA was the introduction

of population-based algorithm with operators for crossover

and mutation. The crossover operator is responsible for

producing offsprings by way of recombining information

from two parents, thus providing major exploratory

mechanism of the algorithm [1]. On the other hand, mutation

prevents convergence of the population by flipping a small

number of randomly selected bits ensuring the continuous

introduction of variation [1]. The unique cooperation between

crossover and mutation, together with selection, provides the

driving force behind GA [2]. The complexity of crossover

operators play an important role in searching and providing

solution to a problem since a more complex crossover

operator results in longer processing times. This becomes

even more pronounced when dealing with search problems of

greater complexities.

This paper details the modification of GA utilizing a novel

and less complex crossover operator called Push and Pop

Exchange Genes Crossover (PPX). A comparison of its

performance with those of existing crossover operators in

terms of processing time using real data is then given to show

how the use of simpler crossover operator is able to improve

the performance of GA.

II. RELATED LITERATURE

Genetic algorithms have a recombination operation which

seems to be closest to the natural paragon and crossover

operator is used to mimic biological recombination between

two single chromosome organisms [10]. Various crossover

operators have been utilized but these have complexity issues

that negatively affect the GA.

A. Segmented Crossover

Segmented crossover represents a variant of N-point

crossover. In this crossover, the number of crossover points is

not constant at segment switch rates we used which specify

the probability that a segment will end at any point in the

string. Starting from first position in a string, one real-valued

number q and one natural number j are generated. The number

q represents the probability that j will be a crossover point.

[3][5]

B. Shuffle Crossover

Shuffle crossover is similar to one-point crossover. First, a

single crossover position is selected. Before the variables are

exchanged, they are randomly shuffled in both parents. After

recombination, the variables in the offspring are un-shuffled

in reverse. This removes positional bias as the variables are

randomly reassigned each time crossover is performed. In a

way, shuffle crossover is similar to uniform crossover but

different in that uniform crossover exchanges bits and not

segments like shuffle crossover. Furthermore, in uniform

crossover bits exchanged follow a binary distribution and in

shuffle crossover bits follow uniform distribution, as in

single-point crossover. [2][3]

C. Reduced Surrogate Crossover

To reduce the chance of producing clones Booker

suggested examining the selected parents to define suitable

crossover points. A reduced surrogate crossover operator

reduces parent strings to a skeletal form in which only those

bits that differ in two parents are represented. Recombination

is then limited only to positions of bits in reduced surrogates.

Single-point crossover was used for recombination of skeletal

forms of parents.

Single-point crossover operator can produce parents’

clones; to avoid that reduced surrogate crossover should be

used. If at least one crossover point occurs between the first

and last bits in reduced surrogate, then the offspring will never

duplicate the parents. Also, reduced surrogate will cause that

recombination process equally weights the probability of

generating each offspring which can potentially be produced

by an operator.

Single-point crossover in any continuous region of

matching bits in parents produces same offspring, and thus

introducing bias for some offspring. Reduced surrogate

removes that kind of potential bias. [1][3][5]

D. Half-uniform Crossover

 The half uniform crossover schemes (HUX), exactly half of

the nonmatching bits are swapped. Thus, first the Hamming

Improved Genetic Algorithm using New

Crossover Operator
Joe G. Lagarteja, Bobby D. Gerardo, and Ruji P. Medina

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 4, Issue 1 (2017) ISSN 2349-1469 EISSN 2349-1477

https://doi.org/10.15242/IJCCIE.IAE0817102 151

distance (the number of differing bits) is calculated. This

number is divided by two. The resulting number is how many

of the bits that do not match between the two parents will be

swapped [9].

E. Uniform Crossover

Single and multi-point crossover defines cross points as

places between loci where an individual can be split. Uniform

crossover generalizes this scheme to make every locus a

potential crossover point. A crossover mask, the same length

as the individual structure is created at random and the parity

of the bits in the mask indicate which parent will supply the

offspring with which bits. To avoid problems with genes

locus, it is good to use uniform crossover.

Uniform crossover disrupts schema with great probability

but searches larger problem space. For uniform crossover, the

number of effective crossing points is not fixed, but will

average to l/2 where l represents string length. [3][4][5]

F. Two-Point Crossover

In two-point crossover, both parental genotypes are split at

two points, constructing a new offspring by using parts

number one and three from the first, and the middle part from

the second ancestor.

When using two-point crossover we can expect poorer

performance results because building blocks are more likely

to be disrupted. From other point of view using two-point

crossover will enable searching problem space more

thoroughly. Using single-point and two-point crossover

operator prevents schema to be disrupted, but when

population becomes homogeneous, search space becomes

smaller. [3][4]

III. MODIFIED ALGORITHM

A new PPX crossover operator was introduced into GA in

order to speed up the crossover process and reduce processing

time. PPX follows the concept of stacking using a Last In First

Out (LIFO) approach. The proposed modified algorithm

consists of five steps, as follows:

 1. Create a stack

 2. Repeat

 Push element into the stack

 If the stack is full

 End

 End

 3. Until loop=numElement

 4. Repeat

 Pop the element from the stack

 5. While stack<>empty

 In the initial step, an n number of elements (or parents) for

the crossover process are selected. In the succeeding steps, a

collection of elements are subjected to two principal

operations: push, and pop, which remove the most recently

added element that has not yet been removed. The order in

which the elements come off the stack is indicative of its LIFO

approach.

The restrictions that apply to the stacks are shown in

Figures 1 and 2 showing the elements before and after the

crossover process, respectively. For elements A, B, C, D and

E added to the stack in that order, element E is first to be

removed since it was the last element inserted into the stack in

consonance with LIFO.

IV. EXPERIMENTAL EVALUATION

The performance of the new crossover operator was

compared with those of other crossover operators namely,

Segmented, Shuffle, Reduced, Surrogate, Half Uniform,

Uniform, and Two-Point. For evaluation, processing time was

determined using the various operators using a real dataset

comprising of 1,000 soil testing and classification results

from Cagayan Valley, Philippines. Each object in the dataset

represents different soil properties like color, texture, pH

level, and mottles encoded into series of binary strings of 0s

and 1s.

 Testing was done in the same platform using C#

programming language to obtain fair comparison.

Simulations were performed using a desktop computer with

an Intel Core i5 processor with 2.7 GHz processing speed, 4

GB RAM and 500 GB internal memory with 80% free disk

space.

 The experimental runs were performed using initial

population sizes, N, of 30, 50, and 100. The data all had

lengths, L, of 21 bits and the number of generations G, was set

to 100.

G. Comparative Performance

The performance of the crossover operators were tested for

various population sizes in order to determine the effect of

population size on processing speed and the results for

populations of 30, 50, and 100 are shown in Figures 3, 4, and

5, respectively.

From the figures, it can be seen that PPX consistently has

the least processing time among the operators tested

regardless of population.

Fig. 1. Elements before the crossover process.

Offspring 1

O N M L K F G H I J

Offspring 2

E D C B A P Q R S T

Parent 1
A B C D E F G H I J

Parent 2

K L M N O P Q R S T

Fig. 2. Elements after the crossover process.

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 4, Issue 1 (2017) ISSN 2349-1469 EISSN 2349-1477

https://doi.org/10.15242/IJCCIE.IAE0817102 152

H. Effect of Population Size

a.

b.

c.

d.

e.

f.

g.

h.

i.

j.

k.

The obtained numerical results on the effects of number

in population are graphically shown in Figure 6. As seen from

Figure 6, increasing the population size resulted in an

acceleration of computational time.

I. Comparative Improvement

The use of PPX improved the processing time of GA.

The improvement over the GA using the existing crossover

operators are shown in Table 1. From the table, it can be seen

that the performance of PPX is comparable to that of the

Segmented operator, showing only 5.6% improvement at

population size of 30. Meanwhile, the greatest improvement

was observed over the Half-Uniform crossover operator

where the improvement reached 24.8% at a population size of

30.
TABLE 1.

COMPARATIVE IMPROVEMENT OF GA USING PPX IN TERMS OF

PROCESSING TIME OVER EXISTING ALGORITHMS.

Crossover

Operator

Improvement (%)

N = 30 N = 50 N = 100

Two-Point 6 5.4 4.8

Uniform 14.8 13.4 11.9

Half-Uniform 24.8 22.4 19.9

Reduced

Surrogate

4.8 4.4 3.9

Shuffle 0.7 0.7 0.6

Segmented 5.6 5.1 4.5

V. CONCLUSION

A conclusion section is usually required. Although a

conclusion may review the main points of the paper, do not

replicate the abstract as the conclusion. A conclusion might

elaborate on the importance of the work or suggest

applications and extensions.

Processing time for selected crossover
operators N=30

Time (s)

Fig.3. Performance of crossover operators for a

population of 30.

Fig. 4. Performance of crossover operators for a

population Of 50.

Processing time for selected crossover
operators N=50

Time (s)

Fig. 5. Performance of crossover operators for a population of

100.

Processing time for selected crossover
operators N=100

T
im

e
(s

)
Fig. 6. Effect Of Population Size For Crossover

Operator

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 4, Issue 1 (2017) ISSN 2349-1469 EISSN 2349-1477

https://doi.org/10.15242/IJCCIE.IAE0817102 153

REFERENCES

[1] J. H. Holland: Adaptation in Natural and ArtificialSystems: An

Introductory Analysis with Applications to Biology, Control, and

Artificial Intelligence. Cambridge, USA: The MIT Press, 1992

[2] M. Mitchell: An Introduction to Genetic Algorithms. Cambridge,

USA: The MIT Press, 1999

[3] D. Dumitrescu, B. Lazzerini, L. C. Jain and A. Dumitrescu:

Evolutionary Computation. Florida, USA: CRC Press, 2000

[4] M. Golub: Genetski algoritam: Prvi dio. University of Zagreb, Croatia:

Faculty of Electrical Engineering and Computing, 2004

[5] R. L. Haupt and S. E. Haupt: Practical genetic algorithms, second

edition. New Jersey, USA: Wiley-Interscience, A John Wiley & Sons,

2004

[6] J. H. Holland: Adaptation in Natural and Artificial Systems: An

Introductory Analysis with Applications to Biology, Control, and

Artificial Intelligence. Cambridge, USA: The MIT Press, 1992

[7] Z. Michalewitz: Genetic Algorithms + Data Structures = Evolution

Programs, third edition. Berlin Heidelberg New York, USA: Springer-

Verlag, 1996

[8] M. Mitchell: An Introduction to Genetic Algorithms. Cambridge, USA:

The MIT Press, 1999

[9] S. Picek, M. Golub: The New Negative Slope Coefficient Measure,

Proceedings of the 10th WSEAS International Conference on

Evolutionary Computing, EC’09, 2009, Prag, Czech Republic, pp.

96–101

[10] S. Picek, M. Golub: Dealings with Problem Hardness in Genetic

Algorithms, WSEAS Transactions on Computers, Issue 5, Volume 8,

pp. 747–756

[11] S. Picek, M. Golub: On the Efficiency of Crossover Operators in

Genetic Algorithms with Binary Representation, Proceedings of the

11th WSEAS International Conference on Neural

[12] Networks (NN ’10), the 11th WSEAS International Conference on

Evolutionary Computing (EC ’10) and the 11th WSEAS International

Conference on Fuzzy Systems (FS ’10), Iasi, Romania, 2010, pp.

167–172

[13] S. Rana: The Distributional Biases of Crossover Operators,

Proceedings of the Genetic and Evolutionary Computation

Conference, Morgan Kaufmann Publishers, 1999, pp. 549–556

[14] L. D. Whitley: An Executable Model of a Simple Genetic Algorithm.

Foundations of Genetic Algorithms 2, 1992

[15] L. Zhonggang, Z. Liang: A Quantum-Inspired Hybrid Evolutionary

Method, Proceedings of the 8th WSEAS International Conference on

Applied Computer and Applied Computational Science, Hangzhou,

China, 2009, pp.1422–425

[16] Olympia Roeva et al: Influence of the Population Size on the Genetic

Algorithm Performance in Case of Cultivation Process

Modeling.Proceedings of the 2013 Federated Conference on Computer

Science and Information Systems pp. 371–376

 Joe G. Lagarteja is currently taking up his

Doctor in Information Technology and now on

dissertation writing at Technological Institute of

the Philippines, Quezon City, Philippines and

finished her MIT degree at University of La

Salette, Santiago City, Philippines in the year

2009. He obtained the Bachelor of Science in

Information Technology at the Isabela State

University, Echague Isabela, Philippines in the

year 2007. He started his teaching profession at Institute of Information and

Communication Technology at Isabela State University, Echague, Isabela,

Philippines. Currently, He has been designated as the Department and BSIS

Program Chairman, and has been extensively involved in Research and

Extension of the Institute. He has been tapped by various agencies to

perform job relevant to her field of specialization. Her field of interest

includes information system and data mining.

Dr. Bobby D. Gerardo is currently the Vice

President for Administration and Finance and

holds a rank as professor VI of West Visayas

State University, Iloilo City, Philippines. His

dissertation was about Discovering Driving

Patterns using Rule-based intelligent Data

Mining Agent (RiDAMA) in Distributed

Insurance Telematic Systems. He has published more than 65 research

papers in national and international journals and
conferences. He is a referee to international conferences and journal

publications such as IEEE Transactions on Pattern Analysis and Machine
Intelligence, IEEE Transactions on Knowledge and Data Engineering and

Elsevier Journal on Pervasive and Mobile
Computing, and Ecological Informatics. His research interests lie in the

area of distributed systems, telematics systems, CORBA, data mining, we

services, ubiquitous computing and mobile communications.

Dr. Ruji P. Medina is Dean of the Graduate
Programs and concurrent Chair of the

Environmental and Sanitary Engineering

Program of the Technological Institute of the

Philippines in Quezon City. He holds a Ph.D. in

Environmental Engineering from the University

of the Philippines with sandwich program at the

University of Houston, Texas. He counts among

his expertise environmental modeling and mathematical modeling using multivariate analysis.

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 4, Issue 1 (2017) ISSN 2349-1469 EISSN 2349-1477

https://doi.org/10.15242/IJCCIE.IAE0817102 154

