
 

 

 

Abstract— Let G be a binary labeled graph and  )(GAl =(lij) be 

its label adjacency matrix. For a vertex vi, we define label degree as Li 

= 


n

i

ijl
1

. In this paper, we define Label Laplacian energy 

)(GLEl . It depends on the underlying graph G and labels of the 

vertices. We obtain some results on label Laplacian spectrum. We 

also obtain some bounds for label Laplacian energy. 
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I. INTRODUCTION 

ET G be a graph of order n. The energy of the graph G 

was first defined by Gutman [8] in 1978 as the sum of the 

absolute eigenvalues of G. It represents a proper generalization 

of a formula valid for the total   -electron energy  of  a 

conjugated hydrocarbon as calculated by the Huckel molecular 

orbital (HMO) method  in quantum chemistry. For recent 

mathematical work on the energy of a graph see ([3]-[6], [10], 

[14]). In connection with graph energy, energy -like quantities 

were also considered for other matrices: Laplacian [7], 

distance [9], minimum covering [1], label matrix[13] etc. 

     In 2013, P.G. Bhat and S. D’Souza [13] have introduced a 

new matrix )(GAl  called label matrix of a binary labeled 

graph G = (V,X), whose elements are defined as follows: 
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where a, b, and c are distinct non zero real numbers. The 

eigenvalues {λ1 , λ2 , . . . , λn }  of )(GAl  are said to be label 

eigenvalues of the graph G and form its label spectrum. The 

label eigenvalues satisfy the following simple relations: 
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1 cnbnanQ    and n1, n2 and n3 denote 

number of edges with  (0,0), (1,1) and (0,1) as end vertex 
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labels respectively. The label degree of the vertex vi, denoted 

by Li, is given by Li = 


n

i

ijl
1

. A Graph G is said to be k-label 

regular if Li = k for all i. The label Laplacian matrix of a 

binary labeled graph G is defined as  

Ll(G) = Diag(Li)− )(GAl  

where Diag(Li) denotes the diagonal matrix of the label 

degrees. Since Ll(G) is real symmetric, all its eigenvalues µi,  

 i = 1,2,...,n, are real and can be labeled as µ1 ≥ µ2 ≥ ….≥µn 

These form the label Laplacian spectrum of G. Several results 

on Laplacian of Graph G are reported in the Literature ([5, 10, 

11, 12, 15]) This paper is organized as follows. In the next 

section we establish some general results on Laplacian Label 

eigenvalues µi. In the following section lower bound and 

upper bounds for )(GLEl  are obtained. 

II.  LABEL  LAPLACIAN ENERGY 
 

 The following Lemma 2.0.1 shows the similarities between 

the spectra of label matrix and label Laplacian matrix. For a 

labeled graph, let PA(x) and P(x) denote the label and label 

Laplacian characteristic polynomials respectively. 

Lemma 2.0.1. If {λ1 , λ2 , . . . , λn } is the label spectrum of 

k-label regular graph G, then {k−λn ,k− λn−1,...,k−λ1} is the 

label Laplacian spectrum of G. 

Proof. The label Laplacian characteristic polynomial for k-

label regular graph G is given by 

PL(x)=det(Ll(G)−xI)=(−1)
n
det(Al(G)−(k−x)I)=(−1)

n
PA(k−x). 

Thus, if λ1 ≥ λ2 ≥ ... ≥ λn is the label spectrum of k-label 

regular graph G, then from equation 2.1, it follows that k−λn ≥ 

k−λn−1 ≥ ... ≥ k−λ1 is the label Laplacian spectrum of G. �              
 

We first introduce the auxiliary eigenvalues γi, defined as 

γi = µi − 


n

i

iL
n 1

1
 

 

Lemma 2.0.2. If {µ1 , µ2 , . . . , µn } are the label Laplacian 

eigenvalues of Ll(G), then  
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Lemma 2.0.3. Let G be a binary labeled graph of order n. 

Then 
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Let G be a binary labeled graph of order n. then the label 

Laplacian energy of G, denoted by LEl(G), is defined as 
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In 2006, I. Gutman and B. Zhou defined Laplacian energy 

LE(G) of a graph G. More on Laplacian energy reader can 

refer ([7], [14], [16], [17]). 

Lemma 2.0.4. If G is k- label regular, then LEl(G) = El(G) 
 

 

III. BOUNDS FOR THE LABEL LAPLACIAN ENERGY 

 

Lemma 3.0.5. [16] Let a1,a2,...,an be non-negative numbers. 

Then 
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Theorem 3.1. Let G be a binary labeled graph with n 

vertices and m edges. Then  

n
l

n nRnGLEnnR
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Proof: Note that  
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Using Lemma 3.0.5, it can be easily checked that Theorem 

3.1 is true if ∆=0. 

Now we assume that ∆≠0. 

By setting 
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From Lemma 3.0.5, we have  
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Which can be further expressed as 
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By substituting in above inequality, we obtain 

n
l

n nRnGLEnnR

22
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Theorem 3.2. Let G be a binary labeled graph of order 

 n ≥ 2. Then nRGLER l 2)(2   

Proof: Consider the sum  

 

 

 2

2

11

2

1

2

1 1

)(24

)(22.2

22

GLEnR

GLERn

n

S

l

l

n

j

j

n

i

i

n

i

i

n

i

n

j

ji




































 





 

Note that 0S  i.e.   0)(24
2
 GLEnR l  

Which implies .2)( nRGLEl   

Also we have  0

2

1












n

i

i  and the fact that .0R  

j

nji

i

nji

ji

nji

ji

n

i

i

n

i

i

























11

1

2

11

2

22

2

 

j

nji

iR 



1

22  

Thus 

  RGLE

RRR

GLE

l

j

nji

i

n

i

i

n

i

il

2

422

2

)(

1

2

1

2

1

2





























 

Corollary 3.2.1. Let G be a binary labeled graph of order n. 

Then   2

3

2
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12 cnbnanGLEl   
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Proof: From Theorem 3.2, we have   RGLEl 2  

=2   
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Theorem 3.3. Let G be a labelled graph of order n. Then 
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Proof: We have 



n

i

in L
n 1

1
0 . 

Consider the non-negative term  
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Hence the proof. 
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