Bounds for Laplacian Energy Of Binary Labeled Graph

Dr. Pradeep G. Bhat

Abstract— Let G be a binary labeled graph and $A_l(G) = (l_{ij})$ be its label adjacency matrix. For a vertex v_i , we define label degree as L_i

= $\sum_{i=1}^{n} l_{ij}$. In this paper, we define Label Laplacian energy

 $LE_l(G)$. It depends on the underlying graph G and labels of the vertices. We obtain some results on label Laplacian spectrum. We also obtain some bounds for label Laplacian energy.

Keywords—Label Laplacian Matrix, Label Laplacian Eigenvalues, Label Laplacian Energy.

I. INTRODUCTION

LET G be a graph of order n. The energy of the graph G was first defined by Gutman [8] in 1978 as the sum of the absolute eigenvalues of G. It represents a proper generalization of a formula valid for the total π -electron energy of a conjugated hydrocarbon as calculated by the Huckel molecular orbital (HMO) method in quantum chemistry. For recent mathematical work on the energy of a graph see ([3]-[6], [10], [14]). In connection with graph energy, energy -like quantities were also considered for other matrices: Laplacian [7], distance [9], minimum covering [1], label matrix[13] etc.

In 2013, P.G. Bhat and S. D'Souza [13] have introduced a new matrix $A_l(G)$ called label matrix of a binary labeled graph G = (V,X), whose elements are defined as follows:

$$l_{ij} = \begin{cases} a, & \text{if } \mathbf{v}_i \mathbf{v}_j \in \mathbf{X}(\mathbf{G}) \text{ with } \mathbf{l}(\mathbf{v}_i) = \mathbf{l}(\mathbf{v}_j) = 0, \\ b, & \text{if } \mathbf{v}_i \mathbf{v}_j \in \mathbf{X}(\mathbf{G}) \text{ with } \mathbf{l}(\mathbf{v}_i) = \mathbf{l}(\mathbf{v}_j) = 1 \\ c, & \text{if } \mathbf{v}_i \mathbf{v}_j \in \mathbf{X}(\mathbf{G}) \text{ with } \mathbf{l}(\mathbf{v}_i) = 0 \text{ and } \mathbf{l}(\mathbf{v}_j) = 1 \text{ or vice versa} \\ 0, & \text{otherwise} \end{cases}$$

where a, b, and c are distinct non zero real numbers. The eigenvalues $\{\lambda_1, \lambda_2, \ldots, \lambda_n\}$ of $A_l(G)$ are said to be label eigenvalues of the graph G and form its label spectrum. The label eigenvalues satisfy the following simple relations:

$$\sum_{i=1}^{n} \lambda_i = 0 \qquad and \qquad \sum_{i=1}^{n} \lambda_i^2 = 2Q$$

Where $Q = n_1 a^2 + n_2 b^2 + n_3 c^2$ and n_1, n_2 and n_3 denote number of edges with (0,0), (1,1) and (0,1) as end vertex labels respectively. The *label degree* of the vertex v_i, denoted by L_i, is given by L_i = $\sum_{i=1}^{n} l_{ij}$. A Graph G is said to be *k-label regular* if L_i = k for all i. The label Laplacian matrix of a binary labeled graph G is defined as

$$L_{l}(G) = Diag(L_{i}) - A_{i}(G)$$

where Diag(Li) denotes the diagonal matrix of the label degrees. Since $L_l(G)$ is real symmetric, all its eigenvalues μ_i ,

i = 1,2,...,n, are real and can be labeled as $\mu_1 \ge \mu_2 \ge ... \ge \mu_n$ These form the *label Laplacian spectrum* of G. Several results on Laplacian of Graph G are reported in the Literature ([5, 10, 11, 12, 15]) This paper is organized as follows. In the next section we establish some general results on Laplacian Label eigenvalues μ_i . In the following section lower bound and upper bounds for $LE_I(G)$ are obtained.

II. LABEL LAPLACIAN ENERGY

The following Lemma 2.0.1 shows the similarities between the spectra of label matrix and label Laplacian matrix. For a labeled graph, let $P_A(x)$ and P(x) denote the label and label Laplacian characteristic polynomials respectively.

Lemma 2.0.1. If $\{\lambda_1, \lambda_2, \ldots, \lambda_n\}$ is the label spectrum of k-label regular graph G, then $\{k-\lambda_n, k-\lambda_{n-1}, \ldots, k-\lambda_1\}$ is the label Laplacian spectrum of G.

Proof. The label Laplacian characteristic polynomial for klabel regular graph G is given by

 $\begin{array}{l} P_L(x) = det(L_l(G) - xI) = (-1)^n det(A_l(G) - (k - x)I) = (-1)^n P_A(k - x). \\ Thus, \ if \ \lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n \ is \ the \ label \ spectrum \ of \ k-label \ regular \ graph \ G, \ then \ from \ equation \ 2.1, \ it \ follows \ that \ k - \lambda_n \geq k - \lambda_{n-1} \geq \ldots \geq k - \lambda_1 \ is \ the \ label \ Laplacian \ spectrum \ of \ G. \end{array}$

We first introduce the auxiliary eigenvalues γ_i , defined as

$$\gamma_{i} = \mu_{i} - \frac{1}{n} \sum_{i=1}^{n} L_{i}$$

Lemma 2.0.2. If { μ_1 , μ_2 , ..., μ_n } are the label Laplacian eigenvalues of L₁(G), then $\sum_{i=1}^n \mu_i^2 = 2Q + \sum_{i=1}^n L_i^2$

Lemma 2.0.3. Let G be a binary labeled graph of order n. Then

Dr. Pradeep G. Bhat is with the Mathematics Department, Manipal University, Manipal, India (e-mail: pg.bhat@manipal.edu).

$$\sum_{i=1}^{n} \gamma_i = 0 \qquad and \qquad \sum_{i=1}^{n} \lambda_i^2 = 2R \qquad \text{where}$$
$$R = Q + \frac{1}{2} \sum_{i=1}^{n} \left(L_i - \frac{1}{n} \sum_{i=1}^{n} L_j \right)^2$$

Let G be a binary labeled graph of order n. then the label Laplacian energy of G, denoted by $LE_{l}(G)$, is defined as

$$\sum_{i=1}^{n} |\gamma_{i}| \quad \text{i.e. } LE_{l}(G) = \sum_{i=1}^{n} \left| \mu_{i} - \frac{1}{n} \sum_{i=1}^{n} L_{i} \right|$$

In 2006, I. Gutman and B. Zhou defined Laplacian energy LE(G) of a graph G. More on Laplacian energy reader can refer ([7], [14], [16], [17]).

Lemma 2.0.4. If G is k- label regular, then $LE_{I}(G) = E_{I}(G)$

III. BOUNDS FOR THE LABEL LAPLACIAN ENERGY

Lemma 3.0.5. [16] Let a_1, a_2, \dots, a_n be non-negative numbers. Then

$$n\left|\frac{1}{n}\sum_{i=1}^{n}a_{i}-\left(\prod_{i=1}^{n}a_{i}\right)^{\frac{1}{n}}\right| \leq n\sum_{i=1}^{n}a_{i}-\left(\sum_{i=1}^{n}\sqrt{a_{i}}\right)^{2}$$
$$\leq n(n-1)\left[\frac{1}{n}\sum_{i=1}^{n}a_{i}-\left(\prod_{i=1}^{n}a_{i}\right)^{\frac{1}{n}}\right]$$

Theorem 3.1. Let G be a binary labeled graph with n vertices and m edges. Then

$$\sqrt{2R + n(n-1)\Delta^{\frac{2}{n}}} \le LE_l(G) \le \sqrt{2(n-1)R + n\Delta^{\frac{2}{n}}}$$

Where, $\Delta = \left| \det \left(L_l(G) - \frac{1}{n} \sum_{j=1}^n L_j I \right) \right|$

Proof: Note that

$$\sum_{i=1}^{n} |\gamma_i| = LE_l(G) \quad \text{and} \quad \sum_{i=1}^{n} \lambda_i^2 = 2R$$

Using Lemma 3.0.5, it can be easily checked that Theorem 3.1 is true if $\Delta = 0$.

Now we assume that $\Delta \neq 0$.

By setting
$$a_i = \gamma_i^2$$
, $i=1,2,...,n$
and $K = n \left[\frac{1}{n} \sum_{i=1}^n \gamma_i^2 - \left(\prod_{i=1}^n \gamma_i^2 \right)^{\frac{1}{n}} \right] \ge 0$,

From Lemma 3.0.5, we have

$$K \le n \sum_{i=1}^{n} \gamma_i^2 - \left(\prod_{i=1}^{n} |\gamma_i| \right)^2 \le (n-1)K$$

Which can be further expressed as

$$K \le 2nR - \left(LE_l(G)\right)^2 \le (n-1)K$$

$$K = n \left[\frac{1}{n} \sum_{i=1}^{n} \gamma_i^2 - \left(\prod_{i=1}^{n} \gamma_i^2 \right)^{\frac{1}{n}} \right]$$
$$= n \left[\frac{1}{n} 2R - \Delta^{\frac{2}{n}} \right] = 2R - n\Delta^{\frac{2}{n}}$$

By substituting in above inequality, we obtain

$$\sqrt{2R + n(n-1)\Delta^{\frac{2}{n}}} \le LE_{l}(G) \le \sqrt{2(n-1)R + n\Delta^{\frac{2}{n}}}.$$

Theorem 3.2. Let G be a binary labeled graph of order
 $n \ge 2$. Then $2\sqrt{R} \le LE_{l}(G) \le \sqrt{2nR}$
Proof: Consider the sum
 $S = \sum_{n=1}^{n} \sum_{j=1}^{n} (|\gamma_{j}| - |\gamma_{j}|)^{\frac{2}{n}}$

$$S = \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\left| \gamma_i \right| - \left| \gamma_j \right| \right)$$
$$= 2n \sum_{i=1}^{n} \left| \gamma_i \right|^2 - 2 \left(\sum_{i=1}^{n} \left| \gamma_i \right| \right) \left(\sum_{j=1}^{n} \left| \gamma_j \right| \right)$$
$$= 2n.2R - 2 \left(LE_l(G) \right)^2$$
$$= 4nR - 2 \left(LE_l(G) \right)^2$$

Note that $S \ge 0$ i.e. $4nR - 2(LE_{I}(G))^{2} \ge 0$ Which implies $LE_{I}(G) \leq \sqrt{2nR}$. Also we have $\left(\sum_{n=1}^{n} \gamma_{n}\right)^{2} = 0$ and the fact that $R \ge 0$.

Thus we have
$$\left(\sum_{i=1}^{n} \gamma_{i}\right)^{2} = 0$$
 and the fact that $K = 1$

$$\sum_{i=1}^{n} \gamma_{i}^{2} = \left(\sum_{i=1}^{n} \gamma_{i}\right)^{2} - 2\sum_{1 \le i < j \le n} \gamma_{i} \gamma_{j}$$

$$\leq 2 \left|\sum_{1 \le i < j \le n} \gamma_{i} \gamma_{j}\right| \leq 2 \sum_{1 \le i < j \le n} |\gamma_{i}| |\gamma_{j}|$$

$$2R \le 2 \sum_{1 \le i < j \le n} |\gamma_{i}| |\gamma_{j}|$$

$$LE_{l}(G)^{2} = \left(\sum_{i=1}^{n} |\gamma_{i}|\right)^{2}$$
Thus
$$= \sum_{i=1}^{n} |\gamma_{i}|^{2} + 2 \sum_{1 \le i < j \le n} |\gamma_{i}| |\gamma_{j}|$$

Thus

$$= 2R + 2R = 4R$$

 $LE_{I}(G) \ge 2\sqrt{R}$ Corollary 3.2.1. Let G be a binary labeled graph of order n. Then $LE_l(G) \ge 2\sqrt{n_1a^2 + n_2b^2 + n_3c^2}$

Proof: From Theorem 3.2, we have $LE_{l}(G) \ge 2\sqrt{R}$

$$=2\sqrt{\sum_{1\leq i< j\leq n} l_{ij}^{2} + \frac{1}{n} \sum_{i=1}^{n} \left(L_{i} - \frac{1}{n} \sum_{j=1}^{n} L_{j} \right)^{2}}$$
$$\geq 2\sqrt{\sum_{i=1}^{n} l_{ij}^{2}} = 2\sqrt{n_{1}a^{2} + n_{2}b^{2} + n_{3}c^{2}}.$$

Theorem 3.3. Let G be a labelled graph of order n. Then

$$LE_{l}(G) \leq \frac{1}{n} \sum_{i=1}^{n} L_{i} + \sqrt{\left(n-1\right)\left[2R - \left(\frac{1}{n} \sum_{i=1}^{n} L_{i}\right)^{2}\right]}$$

Proof: We have $\gamma_n = 0 - \frac{1}{n} \sum_{i=1}^{n} L_i$.

Consider the non-negative term

$$S = \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \left(\left| \gamma_i \right| - \left| \gamma_j \right| \right)^2$$

= $2(n-1) \sum_{i=1}^n \gamma_i^2 - 2 \left(\sum_{i=1}^n \left| \gamma_i \right| \right) \left(\sum_{i=1}^n \left| \gamma_j \right| \right)$
= $2(n-1) \left[2R - \left(\frac{1}{n} \sum_{i=1}^n L_i \right)^2 \right] - 2 \left(LE_l(G) - \frac{1}{n} \sum_{i=1}^n L_i \right)^2 \ge 0$

Hence the proof.

REFERENCES

- C. Adiga, Abdelmejid Bayad, Ivan Gutman and Shrikanth Avant Srinivas, The minimum covering energy of a graph, *Kragujevac J.Sci.*, vol. 34 (2012) pp.39-56.
- [2] C. Adiga, E. Sampathkumar, M. A. Sriraj, Shrikanth A. S.,Color energy of a graph, *Proc. Jangjeon Math. Soc.*, vol. 16 (2013) pp 335-351
- [3] R. Balakrishnan, The energy of a graph, Linear Algebra Appl., Vol.387(2004) pp. 287-295. http://dx.doi.org/10.1016/j.laa.2004.02.038
- [4] R. B. Bapat, Graphs and matrices, Springer Hindustan Book Agency, London, 2011.
- [5] R. Li, Some lower bounds for Laplacian energy of graphs, *International Journal of Contemporary Mathematical Sciences*, Vol. 4(2009), pp. 219-223.
- [6] D.M. Cvetkovic, M. Doob and H. Sachs, Spectra of graphs, Theory and applications, *Academic Press*, New York, 1980.
- [7] I. Gutman and B. Zhou, Laplacian energy of a graph, *Lin.Algebra Appl.* Vol.414(2006) pp. 29-37. http://dx.doi.org/10.1016/j.laa.2005.09.008
- [8] I. Gutman, The energy of a graph, Ber. Math. Stat. Sekt.Forschungsz. Graz. Vol.103(1978), pp. 1-22.
- [9] G. Indulal, I. Gutman and A. Vijayakumar, On distance energy of graphs, MATCH Commun.Math. Comput.Chem., Vol.60 (2008), pp. 461-472.
- [10] Jia-yu Shao, Li Zhang and Xi-ying Yuan, On the second Laplacian eigenvalues of trees of odd order, *Lin. Algebra Appl*. Vol. 419(2006), pp. 475-485. http://dx.doi.org/10.1016/j.laa.2006.05.021
- [11] Maria Robbiano and Raul Jimenez, Applications of a theorem by Ky Fan in the theory of Laplacian, *MATCH Commun.Math.Comput.Chem.*, Vol.62(2009), pp.537-552.
- [12] B. Mohar, The Laplacian spectrum of graphs, in Graph theory, Combinatorics and Applications, Y. Alavi, G. Chartrand, O. E. Ollerman and A. J. Schwenk, *Eds., John Wiley and Sons*, New York, USA, (1991) pp. 871-898.

- [13] Pradeep G. Bhat, Sabitha D'Souza, Energy of binary labeled graph, *Trans. Comb.* Vol. 2.No. 3(2013) pp. 53-67.
- [14] Tatjana Aleksic, Upper bounds for Laplacian energy of graphs, MATCH Commun.Math. Comput.Chem Vol..60(2008) pp. 435-439.
- [15] E. R. Van Dam and W. H. Haemers, Which graphs are their spectrum?, *Linear Algebra Appl.*, Vol.373 (2003) pp. 241-272. http://dx.doi.org/10.1016/S0024-3795(03)00483-X
- [16] Bo Zhou, Ivan Gutman and Tatzana Aleksic, A note on energy of graphs, MATCH Com- mun.Math.Comput. Chem. Vol.60 (2008) pp. 441-446.
- [17] Bo Zhou, More on energy and Laplacian energy, MATCH Commun.Math.Comput. Chem. Vol.64 (2010)pp. 75-84.