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    Abstract-----In statistical practices, difficulties of missing data 

are universal. Several techniques are used to handle this dilemma of 

missing data. They include both old approaches, which require only 

a small amount of mathematical computations and new approaches, 

which require additional difficult computations that are ever easier 

for social work researchers to carry out the statistical programming 

softwares. In the existing system, there is a novel setting of missing 

data imputation, i.e. imputing in mixed-attribute data sets. This 

system offers two consistent estimators for discrete and continuously 

missing target values, correspondingly. After that a mixture-kernel 

based iterative estimator is offered to impute mixed-attribute data 

sets. In this method, the local kernel and global kernel are used and 

linear combination of these mixed kernels is used. Nevertheless, the 

accuracy of the system is decreased with the large number of data 

samples. Unquestionably it will degrade the performance of the 

system. To improve the performance and to increase the accuracy of 

the system we proposed three approaches. First we introduce the 

local kernal RBF using KL divergence, secondly we introduce the 

global kernal polynomial using probability distribution and finally 

mixed kernels in piece level combination instead of linear 

combination. From the experimental result we can obtain that the 

proposed system is much more effective than the existing system. 

The performance also is shown to have improved in this proposed 
system.  

    Keywords----Missing data imputation, Kernel Function 

Selection, Linear Mixture Kernel Function, RBF kernel, Polynomial 
kernel and Statistical Imputation for Missing Data. 

I. INTRODUCTION 

MPUTATION of Missing data [1] is the important 

objective as it offers to find out the missing values by 

calculation from experimental data.  Since the missing 

values lead to less accuracy that in turn result in the 

worthiness of the patterns and/or the efficiency of the 

classification, estimation of missing data has been an 

important issue in learning from incomplete data. In the 

datasets with homogeneous attributes, which are described as 

independent attributes, numerous numbers of techniques are 

being built up for the missing values estimation. Despite the 

fact that these imputation techniques cannot be supported to 

many real data sets, for instance equipment maintenance 

databases, gene databases, and industrial data sets [2], these 

data sets are frequently with both continuous and discrete 

independent attributes. The heterogeneous data sets are 
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generally named as „mixed-attribute data sets‟. In these 

heterogeneous data sets have independent attributes which are 

called „mixed independent attributes‟. 

     Imputation of mixed attribute data sets is a new issue in the 

imputation of missing data, since there is no estimator 

proposed for imputing missing data in mixed attribute data 

sets. Some of the difficult problems are, for instance, how to 

measure the correlation between instances in a mixed-attribute 

data set and how to build the novel estimators using the 

observed data in the data set.  To overcome this difficulty, this 

system proposes a nonparametric iterative imputation 

approach based on mixture kernels which are used for missing 

values imputation in mixed-attribute data sets. To understand 

the probability density for independent attributes, a kernel 

estimator is built first. After that, a mixture of kernel 

functions, which is defined as a linear combination of two 

single kernel functions, is proposed for the estimator. In this 

estimator the mixture kernel is used as a replacement for the 

single kernel function in the traditional kernel estimators. This 

estimator is called „mixture kernel estimator‟.   According to 

this, two consistent kernel estimators are built for discrete and 

continuous missing target values, correspondingly.  

The mixture kernel based iterative estimators make use of 

all accessible observed information. The available information 

contains the observed information in incomplete instances 

(with missing values), to impute missing values, from 

observed information which contains complete instances 

(without missing values).  To defeat this issue various 

applications has been used to perform missing value 

imputation. It is a specific and difficult issue confronted by 

machine learning and data mining techniques. Consequently, 

there are many challenges in the imputation of missing value. 

The established missing value estimation approaches can be 

usually classified as regression imputation (RI) and the 

Nearest Neighbour Imputation (NNI) which is demonstrated 

in [3]. Following this, by replacing them with some believable 

values, missing values in a dataset are concluded. The 

sensible values are normally produced from the dataset using 

an imputation method. 

Of late, imputing performed in mixed-attribute data sets 

poses to be a significant difficulty in the missing value 

imputation. In view of the fact that, for estimating the missing 

data in mixed attribute data sets, the estimator is not 

considered. The challenges include issues such as how 

measuring the association between instances in a mixed-

attribute data set. There is also a concern as to how to build 

the hybrid estimators using the observed data in the data 

set.problem. 

I 
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II. RELATED WORKS 
 

Approaches for Missing value are categorized into three 

methods. These ideas are offered in the following works such 

that [5], [6], [7]: i) case deletion, ii) learning without handling 

of missing values, and iii) missing value imputation. In the 

first approach, case deletion [8] is a method which is used 

basically to ignore those cases that come along with the 

missing values and to complete the learning progression only 

to utilize the residual instances. For the second technique of 

the learning without handling of missing data schemes, such 

as Bayesian Networks method, Artificial Neural Networks 

method, and some more approaches are demonstrated in [9], 

[10]. The third approach is entirely dissimilar to the above 

two techniques. This approach maintains filling in missing 

values. This producer is processed before the learning 

procedure starts. Missing data imputation is nothing but an 

approach which is used to replace the missing values with 

other practical values, such as the ones presented in [11] and 

[12].  Though the imputation method is considered as a more 

favourable approach [13], a new research direction, the 

Parimputation (Partially Imputation) scheme, has been 

introduced recently in [14].  It supports the imputation of a 

missing datum. If some complete instances in a small 

neighborhood of the missing datum are there, then only this 

data are imputed, if not that missing data is not imputed. By 

using the grid search technique, the optimal bandwidth is 

selected in the mixture kernel estimators, which is a 

replacement of the data-driven technique used in [15]. 

Q.H. Wang and R. Rao [11], proposed a empirical 

likelihood technique which is benefits to the missing value 

response difficulty. 

The important aim of this research is to expand the 

empirical likelihood technique to the missing response 

trouble, which was well thought-out by Cheng; in addition, it 

also aims at making assumptions on the mean of response Y.  

The overall idea is to estimate the missing Y –values by the 

kernel regression imputation and then to build the complete 

data empirical likelihood for θ, which is obtained from the 

imputed data set as if they were independent and identically 

distributed (i.i.d.) observations. However, the imputed data 

are not i.i.d.  Significantly, the empirical log-likelihood ratio 

in the estimation is asymptotically dispersed as a scaled chi-

square value.  Nevertheless, the empirical log likelihood ratio 

cannot be functional straight to construct statistical inference 

on θ.  Therefore, adjustment of the empirical log-likelihood 

ratio is one main motivation for this research. In other words, 

the adjusted log likelihood ratio is asymptotically dispersed as 

a standard chi-square value. It is well-known that Adimari (in 

(1997) used the empirical likelihood approach, but to build 

inference under random restriction and acquired an analogous 

result. By making effective use of the known 

auxiliary information on X and the empirical 

likelihood method, an empirical likelihood-based estimator of 

θ is proposed, which has a smaller asymptotic variance than , 

and some truncated versions of it. Besides, an adjusted 

empirical likelihood ratio with auxiliary information is also 

attained and then it is applied to make confidence intervals for 

θ. 

V.C. Raykar.et.al,[16] Propose a computationally 

efficient -exact approximation algorithm. This is proposed for 

univariate Gaussian kernel based density derivative 

estimation. This algorithm reduces the complexity of 

computational from O(MN) to O(N+M); in other words the 

computational complexity is reduced from O(N
2
) to O(N).  In 

this work, the scheme is applied to calculate approximately 

the optimal bandwidth, which is used for kernel density 

estimation. This paper also presents a process with a speedup 

obtained for optimal bandwidth estimation. This estimation 

method supports both simulated data and real data. In this 

work the Taylor's series expansion is used about a certain 

point x*.  On the other hand, when the same x* is used for all 

the points, generally it would process the high truncation 

number p for the reason that the Taylor's series offers good 

estimation only in a small open interval around x*.  

Consistently the space is sub-divided into K intervals with the 

length 2rx. The N source points are given into K clusters, Sn 

for n = 1;. . . . . ;K with cn being the center of each cluster. 

After this process completion, the collective coefficients are 

estimated for each cluster and then summations of all 

clusters‟s total contribution are performed. As the Gaussian 

decays very fast, acceleration is acquired if all the sources 

belonging to a cluster are omitted and if the cluster is greater 

than a certain distance from the target point.  

 

III. EXISTING METHODOLOGY 
 

In this imputation approach, the ith missing value is 

denoted by MVi and the imputed value of MVi in tth iteration 

imputation is regarded as V
t
i. From the above algorithm, all 

the imputed values are used to impute subsequent missing 

values.  This means that the (t + 1)th (t - 1) iteration 

imputation is performed according to the imputed results of 

the tth imputation, up till the filled-in values converge or start 

on to cycle or satisfy the requirements of the users. 

In this first iteration of imputation process, all missing 

values are imputed, including using the mean for continuous 

attributes.  In the field of machine learning, replacing the 

missing values with the mean of an attribute is a well-liked 

imputation technique.  Nevertheless, Brown pointed that this 

method is applicable if and only if the data set is taken from a 

population with a normal distribution. This is typically 

impracticable for real applications for the reason that the real 

distribution of a data set is can‟t predetermined. Conversely, 

Rubin established that a single imputation cannot offer valid 

standard errors and confidence intervals, given that it 

disregards the uncertainty implicit in the fact that the imputed 

values are not the actual values. Hence, according to the first 

imputation, extra iteration-imputations performed are 

reasonable and essential for improved dealing with the 

missing values. 

Analysing the second iteration of imputation, each of 

them is carried out on the basis of the former imputed results, 

with the nonparametric kernel estimator. During the 

imputation process, when the missing value V
t
i is imputed 
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according to Iterative Kernel Estimator for Continuous Target 

Variable and Discrete Target Variable, all other missing 

values are regarded as observed values, i.e., MVi = V
t-1

i, p  

Sm, p = 1, . . . ,m, p ≠ i. In particular,  V
1

i = mean (S
r
 in Y 

) if the target variable Y is a continuous variable, V
1
i = 

mode (S
r
 in Y ) if Y is a discrete one in this algorithm. While 

the filled-in values start converging or begin a cycle, the 

missing continuous attributes imputation iteration will be 

finished. For discrete missing values, the imputation 

algorithm will be terminated if |CAt - CAt-1| ≥ , based on the 

principle of the parameter iterative algorithm EM, where  is 

a nonnegative constant specified by users; the classification 

accuracy for the tth imputation is denoted by CAt. After 

completing the first imputation, the time of iteration of the 

algorithm is t for discrete missing attribute imputation.  

Zheng et al. showed that Polynomial kernel (such as the 

global kernel) has good extrapolation at lower order degrees; 

however it needs higher order degrees for obtaining a well 

interpolation. Also RBF kernel (such as local kernel) is well 

in interpolation, although it does not succeed to offer good 

extrapolation. They also showed that a mixture of kernels can 

lead to much better extrapolation and interpolation than using 

either the local or global kernels. In this study, the proposed 

imputation technique is founded on a mixture kernel function 

which is defined as follows: 
 

Linear Mixture Kernel Function: Let Kpoly = (< x, xi > 

+1)
q
, Krbf = exp(-(x – xi)

2
 / σ

2
), a linear mixture kernel 

function is defined as follows: 
 

Kmix = Kpoly + (1 -  ) Krbf 
 

where q is the degree of the polynomial, σ is the width of the 

radial basis function (RBF), and  is the optimal mixed 

coefficient (0 ≤  ≤ 1). The values of , q, and σ are 

constant scalars, but have to be determined with experiments. 

For imputing missing data in a mixed-attribute data set 

the consistent kernel regression is proposed. This proposed 

mixture kernel- based iterative nonparametric estimator 

supports both the data sets cases, i.e. both continuous and 

discrete attributes. This system makes use of all accessible 

observed information. It make use of all available observed 

information, as well as observed information in incomplete 

instances which contains missing values for imputing the 

missing values, whereas existing imputation techniques 

develop the system which is considered only the observed 

information in complete instances which is not contains the 

missing values. The optimal bandwidth is choosen by use of 

grid search approach. 

 

IV. PROPOSED METHODOLOGY 
 

In the proposed system, three novel approaches are 

introduced. They are: 

1. RBF kernel using KL divergence 

2. Polynomial kernel using probability distribution 

3. Piece level combination in mixed kernels 

In the following section, a detailed description of these 

three approaches is presented, with a view to pronouncing the 

novelty in their performance.  These three techniques are very 

well used in the proposed system to improve accuracy. The 

following chapters clearly explain how these techniques 

improve the performance of the system. 

 

1. RBF kernel using KL divergence 

The (Gaussian) radial basis function kernel (RBF), is a 

well-liked kernel function used in support vector 

machine classification. In general, in the machine learning 

fields it is widely used. The RBF kernel on two 

samples x and x', represented as feature vectors in some input 

space, is defined as 

K(x, x') = exp ( ) 

Where,  is defined as the squared Euclidean 

distance between the two feature vectors. 

is a free parameter.  

In the proposed system, in order to improve the 

performance of the system, the RBF kernel using Kullback-

Leibler divergence (KL-divergence) is introduced. In general, 

RBF kernel is derived from the Euclidean distance measure. 

Instead of Euclidean distance between the two feature vectors, 

we are proposed the KL divergence between the two feature 

vectors. KL divergence is a popular measure for a similarity 

between two probability distributions. The KL-divergence is 

defined as, 

KL [  dx 

Where, p and q are two feature vectors in some input 

space. 

The proposed RBF kernel using KL divergence is 

defined as follows, 

K(x, x') = exp ( ) 

Where,  is defined as the squared KL 

divergence between the two feature vectors 

An equivalent, but simpler, definition involves a 

parameter: γ =  

K(x, x') = exp ( γ  ) 

Since the value of the RBF kernel decreases with distance 

and ranges between zero (in the limit) and one (when x = x'), 

it has a ready interpretation as a similarity measure.  
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2. Polynomial kernel using probability distribution 
 

The polynomial kernel is also a kernel function which 

is mainly used in support vector machines (SVMs) and 

other kernelized models. This kernel function represents the 

similarity of vectors (training samples) in a feature space over 

polynomials of the original variables, allowing learning of 

non-linear models, in machine learning fields. 

Spontaneously, the polynomial kernel looks not only at 

the given features of input samples to determine their 

similarity, but also combinations of these. In the framework 

of regression approaches, such combinations are known as 

interaction features. The polynomial kernel‟s feature space 

(implied) is equivalent to that of polynomial regression, 

however, without the combinatorial blow up in the number of 

parameters to be learned. While the input features are binary-

valued, they match up to logical conjunctions of input 

features. 

For degree-d polynomials, the polynomial kernel is 

defined as 

K(x, y) = (x
T
y + c)

d 

where x and y are vectors in the input space, in other 

words vectors of features computed from training or test 

samples, c ≥ 0 is a constant trading off the influence of 

higher-order versus lower-order terms in the polynomial. The 

kernel is such as homogeneous while the c = 0. 

To prove that the proposed system ensures an improved 

accuracy, the probability distribution in the polynomial kernel 

is introduced.  The proposed polynomial kernel function is 

derived with the help of the probability distribution of feature 

vectors in the input space. The proposed polynomial kernel 

function is built by the multiplication of the probability 

distribution of two feature vectors. Thus, it is defined as, 

K(x, y) = (p(x) p(y) + c)
d 

Where, p(x) is probability distribution of x feature 

vectors p(y) is probability distribution of y feature vectors 
 

3. Piece level combination in mixed kernels 
 

Polynomial kernel (such as the global kernel) has good 

extrapolation at lower order degrees; however it needs higher 

order degrees for obtaining an improved interpolation. Also 

RBF kernel (such as local kernel) is well in interpolation, 

although it does not succeed to offer good extrapolation. To 

obtain a stronger extrapolation and interpolation in the 

existing system mixed kernels are proposed. They also 

showed that a mixture of kernels can lead to much better 

extrapolation and interpolation than using either the local or 

global kernels.  

To achieve much better extrapolation and interpolation 

abilities, piece level combinations of the kernels are used. In 

other words, to improve the extrapolation and interpolation, 

piece level combination based mixed kernels are introduced. 

In this proposed approach, the global and local kernels are 

mixed in the piece level. It increases the accuracy of the 

system. The results of Mixing, RBF, and Polynomial kernels 

show that the effects of the Mixing algorithm are better than 

the single kernel.  In other words, using mixture kernels in 

nonparametric kernel estimation can offer good learning 

facility and generalization capability compared to the single 

kernels (either the RBF or polynomial kernels) estimation.  

 

V. EXPERIMENTAL RESULTS 

 

Dataset description 

In the experiment conducted for the proposed study, UCI 

data sets were taken. There are two types of datasets in the 

UCI data viz. continuous data and discrete data. From the 

continuous data, two datasets were taken namely Auto-mpg 

and Housing. From the discrete data, four datasets namely 

Abalone, Pima, Vowel and Anneal were taken. In the 

continuous data, Auto-mpg has the attribute as categorical and 

real attributes. This dataset consists of 398 instances and 8 

attributes. And Housing continuous data has attribute as 

categorical, integer and real attributes. This dataset contains 

506 instances and 14 attributes. 

In the discrete data, Abalone has attributes such as 

categorical, integer and real attributes. It contains 4177 

instances and 8 attributes. The attributes of Anneal data are 

also categorical, integer and real attributes. It consists of 798 

instances and 38 attributes. In Pima data, the type of attributes 

is integer and real. This data contains 768 instances and 8 

attributes. The Vowel discrete data has only real attributes and 

also it contains 640 instances and 12 attributes. 
 

Performance evaluation results 
 

In this section, a comparison of the performances between 

the existing systems such as KNN (K- Nearest Neighbour), 

FE (Frequency Estimator), RBF (Radial basis function 

kernel), Poly (polynomial kernel) and Mixed kernels and the 

proposed system i.e., Modified mixed kernel. The 

performance of the proposed system is evaluated in terms of 

the parameter such as correlation coefficient, RMSE (Root 

Mean Square Error) and classification accuracy.  

CC is defined as the strength and direction of a linear 

relationship between two variables. In our system, the 

correlation coefficient between the actual and predicted values 

of missing attributes is calculated after convergence. The CC 

value is +1 in the case of a perfect increasing linear 

relationship and -1 in case of a decreasing linear relationship, 

and the values in between point out the degree of linear 

relationship between for actual and predicted values of 

missing attributes. The CC of 0 means that there is no linear 

relationship between the attributes. 
 

 
Fig.1 Correlation Coefficient comparison 
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In the above graph, the performance comparison is shown 

between the existing system such as KNN, FE, RBF, Poly and 

Mixed kernels and proposed system i.e., Modified mixed 

kernel in terms of CC (Correlation Coefficient).  In this graph, 

the x axis will be the missing rate and the y axis will be the 

CC. For different missing rate we are calculating the CC for 

six approaches. While the missing rate is increased, CC vale 

is decreased correspondingly. The proposed system has high 

CC compared to the other existing system. From this, it can 

be easily concluded that the proposed system is well effective 

in CC parameter. 

The RMSE (also called the root mean square deviation, 

RMSD) is a commonly used measure of the difference 

between original attribute value and estimated attribute value. 

The RMSE of an estimated attribute value with respect to the 

original attribute value is defined as the square root of the 

mean squared error: 
 

 

 

RMSE =  

 

 

 

where  is the original attribute value;  is the 

estimated attribute value, and m is the total number of 

predictions. The accuracy of the system depends on this 

RMSE rate value because, if the RMSE rate is larger, then the 

accuracy of the system decreases. 
 

 
Fig.2 RMSE comparison 

 

The above graph shows the performance comparison 

between the existing system such as KNN, FE, RBF, Poly and 

Mixed kernels and proposed system i.e., Modified mixed 

kernel, in terms of the RMSE rate. In this graph, the x axis 

will be the missing rate and the y axis will be the RMSE rate. 

For different missing rate the RMSE rate is calculated for six 

approaches. While the missing rate is increased, RMSE rate 

also increases correspondingly. The proposed system has a 

low RMSE rate compared to the other existing system. From 

this it can be easily understood that the proposed system is 

very effective in RMSE rate. 

In the section, the performance of the proposed system is 

evaluated in comparison with the existing system in terms of 

classification accuracy measurement. The Accuracy can be 

calculated from the formula given as follows: 

 

 

Accuracy =  

 

 

      

 

 

 

 

 

 

 

 

 

 

 

Fig.3. Classification Accuracy comparison 

 

The above graph shows that performance comparison 

between the existing system such as KNN, FE, RBF, Poly and 

Mixed kernels and proposed system i.e., Modified mixed 

kernel in terms of classification accuracy. In this graph the x 

axis will be iteration and the y axis will be classification 

accuracy. In different iteration, the classification accuracy is 

calculated for six approaches. While the iteration is increased, 

classification accuracy also increased correspondingly.  The 

proposed system has a higher classification accuracy 

compared to the other existing system.  From this it can be 

easily inferred that the proposed system is very effective in 

classification accuracy. 

VI. CONCLUSION 

Missing data is an everyday dilemma in economics, since 

the variables missing from a data set or values lead to missing 

observations. In the existing system, consistent kernel 

regression was proposed for imputing missing data in a 

mixed-attribute data set. However, the system fails to improve 

the extrapolation and interpolation ability and also the 

accuracy of the system is lower. With an intention to increase 

the accuracy and to improve the performance through 

achieving much better extrapolation and interpolation of 

kernels, in this research, three approaches are proposed 

namely RBF kernel using KL divergence, Polynomial kernel 

using probability distribution and finally Piece level 

combination in mixed kernels. A better accuracy could thus 

be ensured using these techniques. Consequently this will 

increase the performance and efficiency of the system. The 

proposed system is fast, efficient, easily implemented and 

widely used approach of missed data estimation in mixed 

attributes. 
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