
 

 

 

Abstract—This study investigate different assumptions about 

valuation process in modeling human decision making in a standard 

gambling task. Our research considered three different assumptions 

about valuation of a particular action to find out which can predict 

human decisions with the highest accuracy. This investigation leads 

to a new model which is better than previous models according to its 

performance in predicting behavioral data. We benefit from markov 

chain monte-carlo (MCMC) methods to obtain the maximum 

likelihood and the best performance of the model in predicting 

human behavior. The results demonstrates that the model with error-

frequency driven value function with reversal learning gain the best 

BIC score and is able to predict behavioral data with BIC score more 

than 200. 

 

Keywords—Iowa gambling task, Bayesian information criterion, 

likelihood, Annealed importance sampling. 

I. INTRODUCTION 

HE modeling of human cognition with exploitation of 

both theoretical mathematics and simulation tools can lead 

to a profound knowledge of how people think and decide. 

This can be a key factor for interpreting human behavioral 

disorders and abnormalities. In this way, by applying 

functional models it is possible to approach a precise 

structural model of human brain that is critical for 

development of cognitive science. 

One of the most important aspects of human behavior 

modeling is to determine how people value each decision over 

others. Usually the best choice in a set of possible actions is 

not so clear and a complex value estimation procedure is 

needed to decide advantageously. The aim of this paper is to 

study and investigate how people consider advantageous and 

disadvantageous decisions in uncertain situations. In this study 

model evaluation for human decision on a psychological 

decision making task, the Iowa Gambling Task will be 

performed [1].  

In this article, we will use the Bayesian Information 

Criterion [2] (BIC) to achieve a numerical scale in which 
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show that whether a model is able to mimic the human 

behavior better than a Bernoulli process or not. The main 

advantage of BIC is that it will consider the complexity of the 

model which it make it a powerful tool in order to select the 

best model of human decision making process. Three different 

factors in value function will be considered and the results 

will be compared by the BIC. 

The employed model learning model for comparing 

different value functions is consist of three layers. The first 

layer is a utility function that will represent the human 

estimation of his choice immediately after seeing the payoff 

[3],[4]. Second, a learning rule will be applied in order to 

weight all of alternative actions based on the output previous 

layer and form what the person should expect from his choices 

[3],[5]. The last layer will produce a probability distribution 

over the action set which the person is choosing from [4]. This 

research will focus on the first layer and appraise effect of 

different value functions in modeling human behavior in IGT. 

The Iowa Gambling Task has been used in several previous 

cognitive researches in order to validating behavioral models 

(e.g., [3],[4],[5],[6]) and they analysis different aspects of 

human decision making in IGT. However there wasn’t enough 

heed on the role of value function in a decision making model. 

Kalidindi et al. [4] considered different value functions and 

this study aim to continue and redress the shortage by 

studying   their results and assess their model using BIC. 

Also this study will discuss other aspects such as, 

describing the experimental procedure and findings based on 

empirical data. Describe the model and the method used to fit 

it to the empirical data. Finally using the Bayesian Information 

criterion in order to compare models with different utility 

functions and discuss the role of value function in the 

learning. 

II.  EXPERIMENT PROCEDURE AND EMPIRICAL DATA 

The IGT is a laboratory probe to detect decision making 

deficits in patients with ventromedial prefrontal cortex 

(VMPC) lesion [1]. VMPC damaged patients express perfect 

performance in Wisconsin Card Sorting Test [7], paradigms 

requiring self-ordering [8] and cognitive estimations [9]. 

However their decisions lead to negative results in real life 

conditions and they are usually careless about future 

consequence [10]. The main advantage of the IGT is that it is 
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able to spot decision making abnormalities caused by VMPC 

damages which are obvious in real life situations but other 

psychological tasks are useless in detecting them. 

In this task, the subject sits in front of a computer screen 

that shows four decks of cards which are identical in shape 

and size. He is given some amount of money as the loan of 

play money. The subject is asked to select cards from decks 

and keep on doing it unless he is told to stop. After choosing a 

card, he will be paid an amount of money and will be asked to 

pay another amount of money as penalty. The amount of 

payoff and penalty of the cards of each deck varies with 

others.  The final goal of the task is to maximize the amount 

of money in the account of the subject (For further 

information on the IGT see [11].) 

In the ABCD version of the task which is used in this study, 

there are two good decks and two bad decks. The good decks 

C and D provides a regular win of 1$ and loss of 5$ per 10 

cards. The bad decks, A and B, give the subject amount of 2$ 

per cards and will take 25$ as penalty per 10 cards. The 

penalty in decks B and D is infrequent and large however 

decks A and C will take money more frequently in smaller 

amounts. Each deck consists of 40 decks [1] and each 

participant should choose 100 cards. Table I represents scores 

of first ten card of each deck in ABCD version of IGT. 
 

TABLE I 

WINS AND LOSSES FOR FIRST 10 CARD IN EACH DECK IN ABCD STANDARD 

VERSION OF IGT 

Car

d 

no. 

Deck A Deck B Deck C Deck D 

Win Loss Win Loss Win Loss Win Loss 

1 2$ 0 2$ 0 1$ 0 1$ 0 

2 2$ 5$ 2$ 0 1$ 1$ 1$ 0 

3 2$ 0 2$ 0 1$ 0 1$ 0 

4 2$ 5$ 2$ 0 1$ 1$ 1$ 0 

5 2$ 0 2$ 0 1$ 0 1$ 0 

6 2$ 5$ 2$ 0 1$ 1$ 1$ 0 

7 2$ 0 2$ 0 1$ 0 1$ 0 

8 2$ 5$ 2$ 0 1$ 1$ 1$ 0 

9 2$ 0 2$ 0 1$ 0 1$ 0 

10 2$ 5$ 2$ 25$ 1$ 1$ 1$ 5$ 

A. Participants 

Fourteen individuals from Amirkabir University of 

Technology participated in this study voluntarily. There were 

8 women and 6 men in the participants and almost all of them 

were bachelor and master students (ages 19-24 years; mean 

20.9±1.4). All of them were paid 5$ as show up bonus and an 

amount of reward based on their performance in the task. 

B. Procedure 

The subjects were told to choose card repeatedly over four 

decks. It was clearly said that there were good decks and bad 

decks which they should find the good decks to maximize 

payoffs. Based on the instruction told to the participants, they 

are free to choose each of the decks they want and the only 

goal of the game is to maximize the payoff. Each subject starts 

the task with 10$ as an initial play money and they were 

informed that they will receive their wining at the end of the 

task. In the ABCD version that used in this study, decks A and 

B are bad decks and decks C and D are good decks. Decks B 

and D have infrequent comparably large losses and decks A 

and C have frequent smaller losses.  

C. Results 

We divide each trial by trial result into 5 blocks of 20 cards 

and for each block a score calculated by (1), that is difference 

of number of cards selected from good decks(C and D) and 

number of cards selected from bad decks(A and B).  

(( ) ( ))NetScore C D A B        (1) 

Average of Score over all of participants is plotted in fig. 1. 

Subjects were divided into two groups based on their score. 

The first group, learner subjects, expressed learning during the 

task and their score have been increased over 5 blocks. The 

second group, non-learner subjects, was not capable of finding 

the good decks and their score have been decreased over 5 

blocks [11]. There are 12 learner subjects among 14 

participants (85% of all) and just 2 participants failed to learn 

the task and increase their score. Although even the non-

learner group gained a comparably good score at the end of 

the task but poor performance of these subjects may be the 

result of the uncertain structure of the task or the immature 

cortex of the young college students [12]. 

 
Fig. 1 average score over 5 blocks in learner and non-learner subjects 

III. BEHAVIORAL MODELS 

To examine which utility function mimic the way person 

evaluate the situation with the best accuracy, a computational 

model with three sections for evaluation, expectation and 

decision is considered. Three different kinds of utility function 

are described below for the first section of the model. Our 

novel model is based on previous studies that cover their 

shortages and perform much better in predicting results gained 

from the IGT according to its BIC score. 

A. Error-driven value function 

This function was used in the model proposed by Kalidindi 

et al.  [4]. It is slightly inspired from the delta rule [13] and 

defined by (2). 
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1 1( ) ( ) ( ( ) ( ))t t t tU a U a r a U a      (2) 

In equation (2), ( )tU a is the estimated value for the action 

a in the trial t . ( )tr a denotes the payoff gained from action 

a in the trial t  and   represents the learning rate. 

This function updates the estimation of an action with the 

difference between the estimated amount for the reward and 

the actual reward gained at the last time the action were 

selected. 

B. Error-frequency Driven Value Function 

Kalidindi et al. [4] used this function in their research and 

this is based on the idea that the orbitofrontal cortex biases the 

decision relying on the magnitude of the wining and losses, 

however the basal ganglia has more tendency towards the 

frequency of reward and punishment [14]. 

1 1

1 1

( ( ) 0),      ( ) ( ) (1 ( ))

( ( ) 0),      ( ) ( ) (1 ( ))

t t t t

t t t t

if r a U a U a U a

if r a U a U a U a





 

 

   

   
     (3) 

1( ( ) 0),      ( ) (1 ). ( )t t tif r a U a U a              

For the first trial, the function will follow (4) 

1 1( ) ( ( ))U a sign r a         (4) 

In aforementioned equations,  represents the learning rate, 

and r(t) and ( )tU a  are same as described in (2). According to 

(3) and (4), the function will update the estimated value for 

each action with the difference between the actual value and 

the desired value which will be one if the action result in 

reward in all trials. 

C. Reversal-learning Based Value Function 

Reversal learning is not solely a way of estimating the value 

of an action but it can affect the way subject esteem an action. 

The reversal learning is mainly about how people adapt to 

stimuli that are against their previous beliefs [15]. In other 

words, if the subject has some positive beliefs about an action 

but this action lead to negative consequences in reality, the 

reversal learning can affect the decision in this kind of 

situations. It is also true if the relation become reverse. 

Orbitofrontal cortices play a key role in reversal learning 

and previous studies proves that patients with lesion in 

orbitofrontal regions of brain failed in reversal learning tasks 

[30]. Also Fellows et al. [31] shows that patients with 

ventromedial prefrontal cortex lesion which failed to perform 

in IGT like normal healthy people, express a good 

performance in developed shuffled ABCD variant of the IGT. 

In the shuffled version of the task, the bad cards that contain 

large losses moved to the top of the bad decks so it eliminates 

the initial tendency toward the bad decks and the necessity of 

reversal learning during the task [31]. The good performance 

in shuffled IGT by VMPC damaged patients posits the idea 

that reversal learning plays a key role in human decision 

making procedure in IGT. This is why we add the reversal 

learning term to the value function in order to mimic human 

behavior. 

This function adds the mathematical interpretation of 

reversal learning to the Error-frequency Driven value 

function. Equation proposed by [4] for implementation of 

reversal learning was used in our model. 

 

1 1

1 1

1

1 1
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In this function,  represents the learning rate,  denotes 

the reversal learning rate, Z is an auxiliary variable that help 

to determine necessity of reversal learning and ( )tU a  and r(t) 

are same as described for (2). According to (5), when the 

actual estimated value of the selected action considering the 

last reward or punishment is not same with the previous value, 

the function will decrease the learning rate with . 

D. Experience Weighted Attraction (EWA) for Expectancy 

Function 

EWA combines different assumptions to achieve a more 

general model for learning. This model considers how the 

subject expectation will be changed through new rewards and 

punishments. Moreover, it takes the experience into account 

for learning [16]. Experience of the subject affects the 

expectancy in the way that more experience will result in less 

sensitivity to new payoffs. EWA models have been used in 

various studies [3]. The expectation for each action will be 

calculated using the following equation. 
 

1

1 1

. 1

. . ( ) ( ). ( )
( )

t t

t t t t
t

t

C C

C E a U a a
E a

C



 



 

 




          (6) 

In this function, Et(a) represents the expectation for action a 

in trial t. Ct accounts for the experience in trial t and   is the 

discount factor for the previous attraction [16] and ρ denotes 

the weight for the experience. For ρ = 0, this function will be 

insensitive to the gained experience during the task. On the 

other hand, as the subject proceeds in the task, Ct will be 

increased and the weight for new rewards and punishments 

become less. 

E. Quantal (Logit) Best Response for Choice Rule 

This decision rule based on the prominent idea in behavioral 

economics that human decision making procedure is more 

probabilistic rather than deterministic [17]. In other words, the 

probability of committing a fault will be more as the cost of 

the fault decreases. So the best action will not be chosen with 
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certainty [17]. This idea formulized by the following equation 

in the literature ([17],[18],[19] ). 

There will be a mixed strategy that will follow (7). 
. ( )

. ( ')

'

( )
t

t

E a

t
E a

a A

e
P a

e










                                (7) 

In the aforementioned equation,  is the precision factor, 

Et(a) is the expectancy for action a calculated in the previous 

section and A is the action set which the subject is choosing 

from. At the end, this function provides Pt(a) which 

determines the probability of choosing action a over the action 

set A in the trial t. The precision factor denotes the tendency 

to greedy decisions so for 0  the decision will be purely 

explorative and uniformly random and for     the decision 

will be completely exploitive. 

IV. MODEL VERIFICATION METHOD 

In this study, we have judged models using the maximum 

likelihood estimation and Bayesian Information Criterion that 

will be described below. The final model has 5 independent 

parameters so we should investigate a five-dimensional space 

to find the point with the maximum likelihood to compute 

BIC. So we use the Annealed Importance Sampling method 

for sampling the space and finding the proper point. 

A. Likelihood Estimation 

Likelihood is a powerful tool for evaluating validity of a 

model in predicting behavior of the phenomena in reality. In 

models which predict human behavior in IGT like this study, 

likelihood is obtained from the equation below. 

1

Pr(Empirical data|Model) ( )
N

t t

t

L P a


       (8) 

ta denotes the selected deck at the trial t and ( )t tP a  represents 

the probability of choosing deck 
ta  at that trial.  

B. Annealed Importance Sampling 

This method was proposed by [20] to sample from complex 

distribution with an easy to sample distribution using markov 

chain monte carlo (MCMC) methods (for further details on 

this method see [20]).  

If X is the vector that represents a point in the space of 

parameters of the model, so π(x) will be the prior distribution 

of the parameters X and P(x) will be the posterior distribution 

or the distribution of interest. The final goal is to compute the 

expectation of function F(x) over the distribution of interest 

P(x). To this end, a markov chain (Tj(x,x’)) should be 

calculated that converge to the P(x) and do not change the 

corresponding distribution. Tj(x,x’) denotes the probability 

that the chain goes from x to x’. The desired markov chain for 

this purpose could be calculated using Metropolis-Hasting 

([21],[22]) or Gibbs sampling updates algorithms [23]. Each 

chain will start from a point xn which is produced by the prior 

distribution π(x) and will continue for certain number of 

samples (n+1) to achieve x0. This procedure will provide a 

sequence of samples (xn,xn-1,…, x1,x0) and a corresponding 

weight ω for the last sample x0 that can be derived from the 

following equations. 
1

0

1 1 2 2 1 1 0 0

1 1 2 2 1 1 0

0
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( ) ( )... ( ) ( )
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j j

j n

n n n n

n n n n

n

p p p

p x p x p x p x

p x p x p x p x

where p P x p x

 







   

  





 

    (9) 

 

( )x  is the prior distribution and ( )P x  is the posterior 

distribution. The sequence of distributions in the markov 

chain is denoted by p0,…,pn. 

The factor for the sequence of distributions (β) can be a 

geometric series with the following constraints [20]. This will 

lead to an easier distribution for sampling [20]. 

0 0 11   &   0   &  ...n n            (10) 

This chain should be repeated N times and each will 

provide one sample and a corresponding weight. At the end, 

the expectation of the desired function can be computed as 

follows. 

1 1

( )
N N

i i i

i i

F F X  
 

                  (11) 

F(x) is the function which we want to calculate its 

expectation over the distribution of interest and ωi is the 

weight of sample (Xi) computed during its markov chain. 

For our application, the distribution of interest will be the 

likelihood and the prior distribution should be the bounding 

for each parameter. The function of interest should be 

considered for each parameter separately to compute their 

expectation to achieve the point with maximum likelihood. 

C. Bayesian Information Criterion 

After finding the proper point in parameter space that the 

model will work correctly, BIC should be calculated in order 

to make judgment between different models. This criterion 

was first proposed by [24] in order to choose the right 

dimension for a particular model. First, the estimated 

maximum likelihood of the desired model should be compared 

to a baseline Bernoulli model that assign a constant 

probability for each option [5]. So the BIC will be computed 

using (12) and (13). 
2

model2.( ( ) ( ))baselineG Ln likelihood Ln likelihood  (12) 

2 . ( )BIC G k Ln N                     (13) 

In this study, baseline model is a Bernoulli process which 

set a constant probability for selecting card from each deck. 

So this lead to 3 free parameters (p1,p2,p3,p4=1-( p1+p2+p3)) 

that represents the probability of selecting from decks A, B, C 

and D. in equation (13) Δk denotes difference between 

number of free parameters in desired model and Bernoulli 

model and N is the number of observations or trials which is 

100 for this study. 
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V. MODEL ANALYSIS 

Three models with differences in the evaluation part were 

investigated in this article using the aforementioned methods. 

For considering the effect of a suitable value function in the 

model, three models using same functions as expectation and 

decision sections. 

Maximum likelihood was calculated using the Annealed 

Importance Sampling method and then BIC score was 

computed in the maximum likelihood condition for each 

model. Average and standard deviation of BIC score over 14 

participants for all models is mentioned in table II. 

 
TABLE II 

BIC SCORE FOR ALL PARTICIPANTS 

Model Mean  Standard deviation 

Error driven value 

functiona 

34.18 22.42 

Error frequency driven 

value functiona 

181.43 13.61 

Reversal learning based 

value functionb 

208.38 22.74 

   
a These models have 4 free parameters and for the BIC score Δk = 1     
b This model has 5 free parameters and for the BIC score Δk = 2     
 

According to table I, error driven value function is not able 

to mimic human behavior in reality and valuation in human 

mind is strongly dependent on the frequency of losses. 

Furthermore, implementation of reversal learning in value 

functions of models improves BIC score significantly. That’s 

because it is necessary for the subject to change his beliefs 

about decks during the task and overcome contrasting bias 

that tend to keeping previous plans.    

Implementation of reversal learning adds one more free 

parameter to the model and increases complexity of the model, 

however this modification improve BIC score and compensate 

effect of complexity on that. It proves that reversal learning 

has much more effect on the maximum likelihood and the 

most resemblance to the valuation procedure in the human 

mind. 

Figures 1 – 3 demonstrate information on parameters setting 

in three models. Each figure represents mean and standard 

deviation of free parameters of each model.  

Figure 4 shows that there is high amount of deviation in 

every parameter in the reversal learning model. This may be 

result of complexity of the model. As complexity or number 

of free parameters increases, the model will fit to single set of 

data and the final model will have a wide range in parameters 

because of differences in data sets. 

 
Fig. 2 Mean and standard deviation for parameters in model with 

error driven value function, γ : learning rate, ϕ : discount factor for 

previous attraction, ρ : experience weight, θ : precision factor. 

 

 
Fig. 3 Mean and standard deviation for parameters in model with 

error-frequency driven value function, γ : learning rate, ϕ : discount 

factor for previous attraction, ρ : experience weight, θ : precision 

factor 

 

 
Fig. 4 Mean and standard deviation for parameters in model with 

reversal learning based value function, γ : learning rate, ϕ : discount 

factor for previous attraction, ρ : experience weight, θ : precision 

factor 
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VI. DISCUSSION 

In this study, we provide a novel computational model 

based on previous studies in gambling tasks which emphasizes 

importance of valuation process in human decision making 

and investigates its effect on the behavioral modeling. 

Comparing BIC scores obtained for each model, there is 

significant increment in BIC after implementing new value 

functions and it posits that a suitable value function has a 

drastic impact on the performance of the model. 

The first model that uses error driven value function has 

poor performance in predicting human behavior according to 

its BIC score. It can be interpreted by analyzing human 

decision making anatomy. The two parts of the brain that 

contribute a key role in human emotional process of adaptive 

decision making repeated choice tasks are basal ganglia and 

orbitofrontal cortices [25]—[29]. Frank and Claus [14] shows 

that basal ganglia is sensitive to the frequency of wins and 

losses. Their basal ganglia model performed optimally in 

modified version of the IGT that good and bad decks are 

based on the frequency of losses. According to this evidence 

and the role of basal ganglia in decision making, the subject is 

sensitive to both frequency and magnitude of wins and losses 

concurrently. So models that consider just magnitude of error 

would not be able to predict human behavior and it is 

necessary to add terms of frequency based valuation to the 

model. 

For the role of reversal learning in performing this task 

which is proved by previous studies [31],[30], we add the 

mathematical interpretation of this kind of learning to the 

model and the final result posits that this idea make the model 

more powerful in predicting human behavior in IGT. 

Investigating relationship between each parameter in the 

model and a particular part of human brain may be the focus 

point of future works in the field of computational modeling 

human behavior in IGT. 
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