
 

 

 

Abstract—This paper is concerned with the input/output-to-state 

stable (IOSS) filtering problem for Takagi-Sugeno (T-S) fuzzy 

dynamic neural networks. A new set of linear matrix inequality (LMI) 

conditions is proposed such that the filtering error system of T-S fuzzy 

dynamic neural networks is input/output-to-state stable and 

asymptotically. The gain matrix of the proposed fuzzy neural filter can 

be determined by solving the feasibility problem for the proposed LMI 

conditions. 
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I. INTRODUCTION 

Over the past decade, a lot of attentions have been received on 

dynamic neural networks due to their practical applications in 

many areas such as function approximation, parallel 

computation, pattern recognition, and computer vision [1]. In 

recent years, Takagi-Sugeno (T-S) fuzzy model has provided 

an important method to represent complex nonlinear systems 

using local linear systems [2, 3]. Based on the T-S fuzzy model 

concept, T-S fuzzy neural networks are also considered as an 

efficient tool to describe complex systems or networks. 

Recently, Ahn investigated many features of T-S fuzzy neural 

networks such as stability, learning, and robust performance [4, 

5, 6, 7, 8, 9, 10, 11, 12]. 

The input/output-to-state stability (IOSS) approach, first 

introduced in [13], is an indispensable method to deal with 

robust performance and stability analysis for many complex 

dynamic systems using relations between input, state, and 

output information. During the last decade, some results on the 

IOSS have been presented in the literature [13, 14, 15, 16, 17, 

18]. However, to the best of our knowledge, there have been no 

results published on the IOSS filtering for T-S fuzzy neural 

networks in the literature so far. 

In this paper, we consider the IOSS filtering problem for T-S 

fuzzy neural networks. We propose a new set of conditions such 

that the filtering error system of T-S fuzzy neural networks is 

input/output-to-state stable based on linear matrix inequality 

(LMI) approach. Without disturbance, the conditions can 
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guarantee the asymptotic stability of the filtering error system 

of T-S fuzzy neural networks.  

II.  IOSS FILTER DESIGN FOR T-S FUZZY NEURAL NETWORKS 

Consider the following neural network:  

 ( ) = ( ) ( ( )) ( ) ( ),x t Ax t W x t J t Gw t                   (1) 

 ( ) = ( ) ( ),y t Cx t Ew t                                           (2) 

where 1( ) = [ ( ) ... ( )]T n

nx t x t x t R  is the state vector, 

1( ) = [ ( ) ... ( )]T m

my t y t y t R  is the output vector, 

1( ) = [ ( ) ... ( )]T k

kw t w t w t R  is the disturbance vector, 

1= { , , } n n

nA diag a a R     ( > 0, =1, , )ka k n  is the 

self-feedback matrix, n nW R   is the delayed connection 

weight matrix, 1( ( )) = [ ( ( )) ... ( ( ))] :T n n

nx t x t x t R R     is the 

nonlinear function vector satisfying the global Lipschitz 

condition with Lipschitz constant > 0L , n kG R  , m nC R  , 

m kE R   are known constant matrices, and ( ) nJ t R  is an 

external input vector. In this paper, we consider the following 

T-S fuzzy Hopfield neural networks:  
Fuzzy Rule i:  

1 1         i s isIF is and is THEN     

( ) = ( ) ( ( )) ( ) ( ),i i i ix t Ax t W x t J t G w t                     (3) 

( ) = ( ) ( ),i iy t C x t E w t                                              (4) 

where j  ( =1, , )j s  is the premise variable, ij  

( =1, , , =1, , )i r j s  is the fuzzy set that is characterized by a 

membership function, r  is the number of the IF-THEN rules, 

and s  is the number of the premise variables. Using a fuzzy 

inference method, the system (3)-(4) is inferred as follows:  

=1

( ) = ( )[ ( ) ( ( )) ( )
r

i i i i

i

x t h A x t W x t J t   ( )],iG w t              (5) 

=1

( ) = ( )[ ( ) ( )],
r

i i i

i

y t h C x t E w t                                         (6) 

where 1= [ , , ]s   , 
=1

( ) = ( ) / ( )
r

i i ji
h w w   , : [0,1]s

iw R   

( =1, , )i r  is the membership function of the system with 

respect to the fuzzy rule i . ih  is the normalized weight of each 

IF-THEN rule and it satisfies  

 
=1

( ) 0, ( ) = 1.
r

i i

i

h h                              (7) 

We propose the following fuzzy neural filter:  
Fuzzy Rule i:  

Fuzzy Neural IOSS Filter Design for State 

Estimation of T-S Fuzzy Dynamic                 
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1 1         i s isIF is and is THEN     

ˆ ˆ ˆ ˆ( ) = ( ) ( ( )) ( ) ( ( ) ( )),i i ix t A x t W x t J t L y t y t                    (8) 

ˆ ˆ( ) = ( ),iy t C x t                                                                  (9) 

where 
1

ˆ ˆ ˆ( ) = [ ( ) ... ( )]T n

nx t x t x t R  is the state vector of the filter, 

1
ˆ ˆ ˆ( ) = [ ( ) ... ( )]T m

my t y t y t R  is the output vector of the filter, and 
n mL R   is the gain matrix of the filter. Using a fuzzy inference 

method, the fuzzy neural filter (8)-(9) is inferred by  

=1

ˆ ˆ ˆ ˆ( ) = ( )[ ( ) ( ( )) ( ) ( ( ) ( ))],
r

i i i i

i

x t h A x t W x t J t L y t y t       (10) 

=1

ˆ ˆ( ) = ( ) ( ).
r

i i

i

y t h C x t    (11) 

 Define the filtering error ˆ( ) = ( ) ( )e t x t x t . Then, the filtering 

error system is given by  

=1

( ) = ( ){( ) ( ) ( ( )) ( ) ( )},
r

i i i i i i

i

e t h A LC e t W x t G LE w t         

(12) 

=1

ˆ( ) ( ) = ( )[ ( ) ( )],
r

i i i

i

y t y t h C e t E w t                                     (13) 

where ˆ( ( )) = ( ( )) ( ( ))x t x t x t   . Now, we introduce the 

following definitions:  

 

Definition 1 [13] A function 
0 0: R R    is a K  function if it 

is continuous, strictly increasing and (0) = 0 . It is a 
K  

function if it is a K  function and ( )s   as s  . A 

function 
0 0 0: R R R      is a KL  function if, for each fixed 

0t  , the function ( , )t   is a K  function, and for each fixed 

0s  , the function ( , )s   is decreasing and ( , ) 0s t   as 

t  .  

 

In this paper, we design a fuzzy neural filter (8)-(9) such that 

the filtering error system (12)-(13) satisfies  

1
0

( ) max{ ( (0) , ), ( ( ) ),sup
t

e t e t w


  
 

P P P P P P  

 
2

0

ˆ( ( ) ( ) )},sup
t

y y


  
 

P P                             (14) 

where ( )i s  ( =1,2)i  is a K  function and ( , )s t  is a KL  

function. 

 

In the following theorem, we obtain the gain matrix of the 

fuzzy neural filter (8)-(9).  

Theorem 1  Assume that there exist matrices = > 0TP P , 

1 1= > 0TS S , 2 2= > 0TS S , 3 3= > 0TS S , and M  such that  

 2 3

(1,1) (1,2)

(1,2) 0 < 0,

0

i i i

T T

i i i

T

i

PW

S E S E

W P I

 
 

  
  

                (15) 

where 2

1 3(1,1) = ( )T T

i i i i i i iPA MC PA MC L I S C S C       and 

3(1,2) = T

i i i i iPG ME C S E   for =1,2, ,i r . Then the filtering 

error system (12)-(13) is input/output-to-state stable and the 

gain matrix of the fuzzy neural filter (8)-(9) is given by 
1=L P M .  

 

Next, we investigate the asymptotic stability of the filtering 

error system (12)-(13). 

 

Corollary 1  Assume that there exist matrices = > 0TP P , 

1 1= > 0TS S , 
2 2= > 0TS S , 

3 3= > 0TS S , and M  such that  

 
2 3

(1,1) (1,2)

(1,2) 0 < 0,

0

i i i

T T

i i i

T

i

PW

S E S E

W P I

 
 

  
  

               (16) 

 
1 2 > 0T

i iS C S C                                         (17) 

for =1,2, ,i r . Then, the filtering error system (12)-(13) is 

asymptotically stable with ( ) = 0w t . 

III. CONCLUSION 

This paper has considered the IOSS filtering problem for 

T-S fuzzy neural networks. A new set of LMI based conditions 

was proposed such that the filtering error system of T-S fuzzy 

neural networks is input/output-to-state stable. In addition, we 

can guarantee the asymptotic stability of the filtering error 

system of T-S fuzzy neural networks without disturbance. The 

gain matrix of the proposed fuzzy neural filter can be obtained 

by solving the LMIs. 
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