

Abstract—The MODI script is one of the cursive type of

writing in Marathi which is the primary language spoken in the

state of Maharashtra in western part of India. The MODI word

originated from the word “MODANE” meaning “to break”. MODI

Script can be used as a shorthand script for faster writing in

business and other administrative work. MODI language grammar

is similar to Marathi language grammar. When we write any

grammatically sentence of a language in computational forms,

initially it is quite difficult to arrange them. This paper shows how

we can write context free grammar for MODI script since Context

Free Grammar (CFG) is suitable for representing the natural

language properly in computational form. Also CFG is helpful in

pattern recognition for the valuable script. This paper also

highlights the process of specifying CFG for simple MODI Script

sentences.

Keywords—Context Free Grammar (CFG), MODI script,

Pattern Recognition, Parsing.

I. INTRODUCTION

N many languages like English, Japanese, Hindi, etc. the

words can be formed by a several ways naturally. Some

formations are constructing for the valid sentences and some

for invalid sentences. The validity of the sentence is checked

or determined by the grammar of a language i.e. Grammar is

the set of rules. Grammar is also Collection of Rules that

describes valid sentences in a Language[2].

 Context Free Grammar for the Naturallanguage is the

most important area for the research from many years.

That’s way the Context Free Grammar (CFG) for the various

Indian as well as foreign languages are available. The MODI

script has got the importance because of its effective use in

business and other administrative work [5] because of its fast

writing of the characters. That is why some times the MODI

script is called as Short-Hand writing.

 In this paper we tried to write the Context Free Grammar

for the MODI script. Section 2 describes Introduction of

CFG, Section 3 Describes MODI Context Free Grammar;

Section 4 describes the Parser and its Types and finally

Section 5 Concludes the paper.

Dr. Shubhangi Bhatambrekar is Associate Professor, Modern College of

Arts, Science & Commerce, Ganeshkhind, Savitribai Phule Pune University,

India.

Prof. Niket Tajne is Assistant Professor, Modern College of Arts, Science &

Commerce, Ganeshkhind, Savitribai Phule Pune University, India.

II. CONTEXT FREE GRAMMAR

Context Free Grammar is a simple recursive method of

specifying grammar rules by which string in a language can

be generates. Context free grammar is also called as the

Type-

2 grammar [1]. This class or type of grammar generates a

large and rich class of languages which are suitable for

machine communications.

There are four important terms related to the CFG are

Variables, Terminals, Production and Start symbol. Where

the language represented by the variables, is described in

terms of primitive symbols called terminals and set of rules

related to the variables are called production and each

production start from particular position called start symbols

i.e. Context free grammar is collection of four

tuples[1],[2],[4].

G = (V, T, P, S)

Where,

V = A finite set of Variables or Non-Terminals

 T = A finite set of Terminals

 P = A finite set of Production Rules

 S = Start symbol i.e. S Є V

 If grammar is in A → β[4]where A Є V and β is string of

terminals and variable or non-terminals then only we said

that the given grammar is in CFG otherwise such a grammar

is called context sensitive grammar[1]. The context free

grammar the most important phase of the grammar is parser

i.e. reading the each and every character of the string and

that small character called the token, while reading the

string the tree structure is created and it is called a parse tree

or syntax tree. The main goal of parse tree is to show the

hierarchical structure of the language [3]. In which root node

and intermediate nodes contain the variables or non-

terminals and leaf node contain always terminals [1],[2].

Parsing plays an important role while performing many

computational tasks [1].

For example

L = { aⁿ bⁿ | n≥1}

is the implicit definition of the language which accept the

equal no of a’s and b’s which start with a and end with b

always like

L = {ab, aabb, aaabbb,………..}

So the grammar is

S → aSb | ab

So we can accept ab like S → ab then next string we can

construct aabb sentential form

S → aSb S → aabb

Context Free Grammar (CFG) for MODI Script

Shubhangi Bhatambrekar, and Niket Tajne

I

Int'l Conference on Computer Science, Data Mining & Mechanical Engg. (ICCDMME’2015) April 20-21, 2015 Bangkok (Thailand)

http://dx.doi.org/10.15242/IIE.E0415011 20

Here replacment of S as anon-terminal value is depending on

the sentential form.

III. MODI CONTEXT FREE GRAMMAR

MODI is a Brahmi-based script used for writing Marathi

language which is Indo-Aryan language used in Western

India, because of the speed of writing in administrative

affairs [5],[7]. MODI script used in Royal Families of the

Indian State Maharashtra. The MODI word is translation of

the Persian word “Shikasta” Which means “breaking” in

English [5]. As compare with the Marathi language MODI

script is simplest version of it because of the breaking the

character of the word and same methodology apply in the

Parsing of the sentences in Context Free Grammar. The

MODI alphabet are variant of the Marathi Language and it

has 14 vowels and 34 consonant letters [6],[7] as shown in

Figures 1 & 2.

Fig 1 MODI Vowels

Fig 2 MODI Consonants

A. Cfg For Simple Modi Sentence

 Creating grammar for whole MODI script sentences is

difficult; So we select a simple MODI script sentence and

create the Context Free Grammar for each of them. This

paper presents Context free grammar with simple MODI

grammatical productions which will generate a small set of

MODI sentence[1].

Fig. 3 MODI Grammatical Productions

Fig 3 Shows the MODI Grammatical Productions for

simple instructions like in English language [1],[2].

While translating the above three sentences in to the

Context free grammar, we need to read each and every

character from the sentences. This reading method is called

the Parsing.

IV. PARSERS

The Parser / Syntax analyzer basically checks for the

syntax of the language [1]. A syntax analyzer takes the

tokens form the Context free grammar and Sentences and

groups them in such a way that some syntax can be

recognized. After grouping the tokens if at all any syntax

cannot be recognized then error will be generated.

Fig 4 Parser / Syntax Analyzer

Figure 4.1 shows the working of parser with context free

grammar. It accepts sentences or it gives the syntactical

error. Parsers are of two kinds: Top-Down Parser and

Bottom-Up Parser [1].

A. Top-Down Parser

The Top-Down Parsing builds a set of rooted candidate

parser trees from left to right over the string [8]. When the

parse tree can be constructed from root and expanded to

leaves then such type of parser is called Top-Down Parser.

The name itself tells us that the parse tree can be built from

top to bottom. The main task in Top-Down parsing is to find

the appropriate production rule in order to produce the

correct input string [1]. We will understand the process of

Top-Down parsing with the help of grammatical production

example.

For Example

Int'l Conference on Computer Science, Data Mining & Mechanical Engg. (ICCDMME’2015) April 20-21, 2015 Bangkok (Thailand)

http://dx.doi.org/10.15242/IIE.E0415011 21

For the above Grammatical Production we accept one

input sentence and construct the parse tree for that input

sentence by using the Top-Down Parsing method.

Step 1Start building the sentence from start symbol i.e. S

Step 2Insert the Alternative for the S i.e. S → ABC

Step 3Insert the first Alternative for the AB i.e. AB → DE

Step 4It is not satisfied are sentence condition thus we

Insert the Second Alternative for the AB i.e. AB → DEF

Step 5We Insert the First Alternative for the D i.e.

Step 6 We Insert the First Alternative for the E i.e.

Step 7 We Insert the Alternative for the F i.e.

Step 8 Finally we insert the first Alternative for the C i.e.

B. Bottom Up Parser

The parse tree can be constructed from leaves to root such

type of parser is called as Bottom-Up Parser [2]. Thus the

parse tree is built in bottom up manner. In this process, the

input symbols are placed at the leaf nodes after successful

parsing. The Bottom-Up Parse tree is created starting from

leaves, the leaf nodes together are reduced further to internal

nodes, these internal nodes are further reduced and

eventually a root node is obtained.

The Bottom-Up Parse tree construction process indicates

that the tracing of derivations are to be done in reverse order.

In the Bottom-Up Parser two fundamental operation are used

these are Shift and Reduce these operations are similar to

PUSH and POP operation of the stack[2]. Following Table I.

describes the process of shifting and reducing the input

string in to stack of the above grammatical production.

TABLE I.

BOTTOM UP PARSERR PROCEDURE
Steps Stack Parsing Action

I $

II

III $ D

IV

V $ D E Reduce (AB → DE)

VI $ AB

VII

VII $ AB C Reduce (S → ABC)

IX $ S Accept

V. CONCLUSION

In this paper we have shown Context Free Grammar

(CFG) for MODI script since Context Free Grammar (CFG)

is suitable for representing the natural language properly in

computational form. Also CFG is helpful in pattern

recognition for the valuable script. This paper also highlights

the process of specifying CFG for simple MODI Script

sentences with examples.

Int'l Conference on Computer Science, Data Mining & Mechanical Engg. (ICCDMME’2015) April 20-21, 2015 Bangkok (Thailand)

http://dx.doi.org/10.15242/IIE.E0415011 22

REFERENCES

[1] Anshuman, Pandey, 2011. Preliminary Proposal to Encode the

Modi Script” ISO/IEC 10646.

[2] B.M Sagar, Dr.Shobha GI, DrRamakanth Kumar P2. Context Free

Grammar Analysis for simple Kannada Sentences.

[3] Carey, William 1810 A dictionary of the Mahratta language .

Serampore: Serampore Missionary Press.

[4] DhanashreeKulkarni, Specifying Context Free Grammar for Marathi

Sentence

[5] D. N. Besekar, Special Approach for Recognition of Handwritten MODI

[6] N. Chomsky, Three models for the description of language,IRE Trans.

Info.Theory 2 (3) (1956), 113-124.

 http://dx.doi.org/10.1109/TIT.1956.1056813

[7] Rakesh A. Ramraje, History of MODI Script in Maharashtra.

[8] Roark B. Probabilistic Top–Down Parsing and Language

Modeling,Association for Computational Linguist, 2001

[9] ShihadehAlqrainy, HasanMuaidi, Mahmud S. Alkoffash. Context Free

Grammar Analysis for Arabic Sentences.

AUTHOR BIOGRAPHY

 Shubhangi Bhatambrekar has qualifications MSc(Physics), MPhil(Physics),

MCA, PhD(Computer Science), DCL.She is working as Associate Professor &

Head of Computer Science Department at Modern College, Ganeshkhind,

Savitribai Phule Pune University, India since 1998. Her areas of interest

include Theory of Computation, Data Management System, Software

Designing and Software Testing.

 Niket Tajne received his BCS (Bachelor of Computer Science) degree in the

year 2008 and he has completed MCA (Master of Computer Application) in

the year 2011 from Savitribai Phule Pune University, India. He is working as

Assistant Professor in the Department of Computer Science of P.E societies

Modern College of ASC , Ganeshkhind, Savitribai Phule Pune University, India

since 2012. His areas of interest include Theory of Computation, Compiler

Design, software designing and Software Testing.

Int'l Conference on Computer Science, Data Mining & Mechanical Engg. (ICCDMME’2015) April 20-21, 2015 Bangkok (Thailand)

http://dx.doi.org/10.15242/IIE.E0415011 23

http://dx.doi.org/10.1109/TIT.1956.1056813
http://dx.doi.org/10.1109/TIT.1956.1056813
http://dx.doi.org/10.1109/TIT.1956.1056813

