
  
Abstract— Hydromagnetic pulsatile flow of an Oldroyd fluid in 

a channel of porous medium is investigated. The flow in the channel 
is bounded by rigid plates and is driven by an unsteady pressure 
gradient. The lower and upper plates are maintained at uniform 
temperatures T0 and T1 (>T0) respectively. A uniform magnetic field 
is imposed along the direction normal to the flow. The expressions 
for the velocity field and the temperature distribution are obtained. 
The rate of heat transfer at the plates has also been calculated. We 
find that the increase in the frequency parameter R* gives rise to 
decrease in the velocity of the Oldroyd fluid in the channel. It is 
observed that the velocity decreases with increasing H1(which is the 
square root of sum of the squares of the Hartmann number and the 
permeability parameter). It is also observed that the temperature 
increases with the increase in the Prandtl number. 
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I. INTRODUCTION 
HE study of MHD pulsatile flow of an Oldroyd fluid in a 
channel or porous pipe has recently become the object of 

scientific research because of its importance in biological 
applications in relation to haemodynamics and in industrial 
applications in relation to heat exchange efficiency. Pulsatile 
flow is composed of a steady component and a superimposed 
periodical time varying component called oscillation. 
Oscillating flow itself is a special pulsatile flow, which is 
governed by an oscillation only with a zero steady flow 
component. Pulsatile flow is frequently encountered with 
captivating applications in natural systems (circulatory 
system, respiratory system, vascular diseases) as well as 
engineering systems (reciprocating pumps, IC engines, pulse 
combustors).  Other applications of pulsatile flows arise in the 
uretral transport, artherosclerosis, interaction with peristaltic 
flows, flows in curved arteries, cerebral hydrodynamics etc. 

Rockwell et al. [1] presented an excellent study discussing 
pulsatile flow in viscoelastic blood vessels. Chaturani and 
Upadhya [2] used a couple stress fluid model to study the 
pulsatile flow in tubes. The leakage to peripheral vessels from 
pulsatile flow in a principal vessel was discussed by 
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Chadwick [3]. An excellent computational study of pulsatile 
flow dwelling on nonlinear flow aspects was presented by 
Hung [4]. Chaturani and Palanisamy [5] studied the effects of 
periodic body acceleration on the pulsatile flow of blood 
using a casson model. Pedersen et al. [6] also studied 
experimentally a variety of pulsatile flows. Other non-
Newtonian pulsatile flow studies include those by 
Sadeghipour and Hajari [7]. An alternative constitutive model 
for blood rheology was described by Yeleswarupu [8] who 
generalized the Oldroyd-B flow model with experimental 
correlation to flow data. Recent rheological biofluid dynamics 
studies include the models presented by Usha and Prema [9] 
who employed a particle-fluid suspension model of blood to 
study the pulsatile flow under periodic body acceleration in a 
circular conduit. 

More recently Eldabe et al. [10] studied the pulsatile 
hydromagnetic flow of an Eyring-Powell fluid in a parallel-
plate channel with couple stress effects. They obtained finite 
difference solutions for the momentum equation and showed 
that couple stresses decreases flow velocity. For constant time 
the velocity was also shown to decrease with increasing 
pulsation pressure gradient; magnetic parameter was also 
found to depress velocity for a constant Reynolds number. 
Vajravelu et al. [11] have analyzed the pulsatile flow between 
permeable beds. Their study indicated that the maximum 
velocity is attained between the permeable beds and gradually 
the velocity decreases towards the upper permeable bed.  

 A detailed study of non-Newtonian blood flow in small 
diameter vessels has been presented by Scott [12]. Ogulu et 
al. [13] have modeled pulsatile blood flow within a 
homogeneous porous bed in the presence of a uniform 
magnetic field with time-dependent suction. Srinivas et al. 
[14] studied on pulsatile hydromagnetic flow of an Oldroyd 
fluid with heat transfer. Avinash et al. [15] have analyzed 
pulsatile flow of a viscous stratified fluid of variable viscosity 
between permeable beds. 

In this paper, MHD pulsatile flow of an Oldroyd fluid in a 
channel of    porous medium is considered. The fluid is driven 
by an unsteady pressure gradient. A uniform magnetic field is 
applied perpendicular to the channel. Expressions for the 
velocity and temperature are obtained analytically and 
numerical solutions are discussed with graphical 
representation.  
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II. MATHEMATICAL FORMULATION 
We consider the pulsatile flow of a viscoelastic fluid 

between two infinitely long parallel plates, at a distance h apart, 
which is driven by the unsteady pressure gradient. 

{ }1 p A 1 exp (i t)
x

∂
− = + ε ω

ρ ∂
         (1) 

Where ρ is the density of the fluid, p is isotropic pressure, A 
is a known constant, ε is a suitably chosen positive quantity and 
ω is the frequency. Let the x-axis be along one plate and y-axis 
normal to it. It is assumed that the motion is slow so that all 
second order quantities may be neglected. A uniform magnetic 
field is imposed along the direction normal to the flow. In the 
analysis, we assume that the induced magnetic field is 
negligible. 

This study is based upon the Oldroyd model of a viscoelastic 
fluid and the properties of such a fluid are specified by three 
constants η0, of the dimension of viscosity and λ1, λ2 are the 
relaxation and retardation times respectively. The equations of 
the state relating to stress tensor pik and the rate of strain tensor 

( )ik i,k k,i
1e u u
2

= +  of such fluids are of the form  

       '
ik ik ikp p pδ= −                                   (2) 

1 ik 0 2 ik1 p ' 2 1 e
t t

∂ ∂   + λ = η + λ   ∂ ∂   
          (3) 

Where pik is the part of the stress tensor related to the change 
of the shape of  a material element and ikδ  is Kronecker delta. 
The liquid (eii = 0) described by the above model behaves as a 
viscous liquid if η0 > 0 and λ1 = λ2. The equations of motion 
combined with constitutive equations of the hydromagnetic 
viscoelastic fluid through a porous medium are given by 
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The energy equation is  

22

p 2

T T uc
t y y

 ∂ ∂ ∂
ρ = χ + µ ∂ ∂ ∂ 

                          (6) 

The boundary conditions are  
 

u = 0, T = T0 at y = 0                                (7) 
 

u = 0, T = T1 at y = h                         (8) 

 
where u is the velocity component in x-direction, eσ  is 

electrical conductivity, ν  is coefficient of kinematic viscosity, 
µ is the coefficient of dynamitic viscosity, T0 and T1 are the 
temperatures maintained at uniform temperatures at the plate y 
= 0 and y = h respectively. 

III. NON-IMENSIONALIZATION OF THE FLOW QUANTITIES 

We introduce the following non-dimensional quantities 

y
n
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Where 0B  is an imposed uniform magnetic field. It can be 

noted that the results for viscous fluid correspond to the case λ2 

= λ1, i. e F2 = 1 independent of the values of F1. 
 

Substituting (9) in (4) and equating the harmonic terms, 
retaining coefficients of ie τε , the corresponding equations 
become 

      
2

20
1 02 1u H u

η
∂

− = −
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                     (10)                                                                          
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Where ui  is velocity vector. Using (9), the energy equation 
(6) becomes  

22 *
2

* 2

1 uR Ec
t Pr

   ∂θ ∂ θ ∂
= +   ∂ ∂η ∂η                  (12)                                                            

 

Where pC
Pr

µ
=

χ
 and 

( )
2 4

2
p 1 0

A hEc
C T T

=
ν −

 . rP and 

cE represent Prandtl and Eckert numbers respectively, χ is 

thermal conductivity and pC is specific heat. 

The corresponding boundary conditions are  
 
       u = 0,   θ = 0 at η = 0                   (13)  
  
    u = 0,   θ = 1 at η = 1                 (14)  
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IV. SOLUTION OF THE PROBLEM 
The solution of equations (10) and (11) has the form 

i
0 1u u u e , tτ= + ε τ = ω                  (15)                

Where 

1 1
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H sinh H
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= − 

 
               (16) 
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1 1
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sinh

 β − η + β η
= − β β 

         (17)          

In view of (15), the temperature θ can be assumed in the 
form  

        
( ) ( ) ( )i 2 2i

0 1( , t) F e G eτ τθ η = θ η + ω η + ε η      (18) 

Substituting (18) and u* in (12), equating the harmonic 
terms, retaining coefficients of ε2 and solving the corresponding 
equations for θ0, F (η) and G1 (η) with the help of (13) and 
(14), we obtain 
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                    Where   A1= H1+β1, A2= H1 - β1                                                                                                                                                             
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V. NUMERICAL RESULTS AND CONCLUSIONS 

The variation of velocity with η is calculated, from equation 
(15) for different values of ωt and is shown in Figures 1 to 3 for 
fixed F1, F2, σ, β1, ε and H. We observe that the velocity 
decreases with increasing ωt. We also find that the increase in 
R* gives rise to decrease in the velocity of the Oldroyd fluid in 
the channel.  
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FIG. 1 Velocity distribution for various values of tω  

for fixed F1=0.2, F2=0.8, σ=5, β1=0.5, R*=1, ε=0.1and H=3. 
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FIG. 2 Velocity distribution for various values of tω  

for fixed F1=0.2, F2=0.8, σ=5, β1=0.5, R*=2, ε=0.1 and H=3. 
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FIG. 3 Velocity distribution for various values of tω  
for fixed F1=0.2, F2=0.8, β1=0.5, R*=3, ε=0.1 and H=3. 

The variation of velocity with η is calculated for different values of 
H, σ and β1 is shown in Figures 4 to 6 for fixed F1, F2,  R*, ε and ωt. 
We observe that the velocity decreases with increasing H or σ or β1. 
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FIG. 4 Velocity distribution for various values of H for fixed F1=0.2, 

F2=0.8, β1=0.5, σ=0, R*=1, ε=0.1 and / 4tω π= . 
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FIG. 5 Velocity distribution for various values of σ for fixed F1=0.2, 

F2=0.8, β1=0.5, H=0, R*=1, ε=0.1 and / 4tω π= . 
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FIG. 6 Velocity distribution for various values of β1 for fixed F1=0.2, 

F2=0.8, σ=5, H=8, R*=1, ε=0.1 and  / 4tω π= . 
 

Int'l Journal of Advances in Mechanical & Automobile Engg. (IJAMAE) Vol. 1, Issue 1(2014) ISSN 2349-1485 EISSN 2349-1493

http://dx.doi.org/10.15242/IJAMAE.E1113541 59



From the equation (18), we have calculated the temperature 
as a function of η, for fixed F1, F2, σ, H, R*, ε, β1, Ec and ωt 
and for different values of Pr and is shown in Figure7. We 
observe that the temperature increases with the increase in Pr. 
The variation of temperature is evaluated as a function of η, 
for fixed F1, F2,  Pr, R*, ε, β1, Ec and ωt  and for different 
values of σ and H and is shown in Figures 8 and 9. It is 
observed that the temperature increases with the decreasing H 

or σ. 
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FIG. 7 Temperature distribution for various values of Pr for 
fixed F1=0.2, F2=0.8, σ=5, β1=0.5, R*=0.1, ε=0.1,H=3, Ec=1 

and / 4tω π= . 
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FIG. 8 Temperature distribution for various values of σ for fixed 

F1=0.2, F2=0.8, β1=0.5, Pr=300, R*=0.1, ε=0.1, H=0, Ec=1 
and / 4tω π= . 
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FIG. 9 Temperature distribution for various values of H for fixed 

F1=0.2, F2=0.8, σ=0, β1=0.5, R*=0.1, ε=0.1, Pr=300, Ec=1 
and / 4tω π= . 

The effect of changing the Hartmann number (for fixed Ec) 
and changing Eckert number (for fixed H1) are shown in 

Tables I and II. Table I shows that the rate of heat transfer 
from the lower plate decreases with increasing Hartmann 
number, whereas it increases in the upper plate. We observe 
from Table II that the rate of heat transfer from the lower plate 
increases with Ec while at the upper plate, the heat flows from 
the fluid to the plate even if T1>T0. 

 
TABLE  I 

EC = 1, PR = 100, R* = 1 
      H1 = 0    H1 = 1   H1 = 2   H1 = 3 

Nu1=(θ0
1) η=0     17.6518 14.7787 9.5485 5.69695 

Nu2=(θ0
1) η=1   -15.6518 -12.7787 -7.5405 -3.6969 

 
TABLE II 

PR = 10, H1 = 1.5, R* = 1 
 Ec = 1 Ec = 2 Ec = 3 Ec = 5 

Nu1=(θ0
1) η=0  2.1123  3.2247  4.3371  6.5618 

Nu2=(θ0
1) η=1 -0.11235 -1.22471 -2.33706 -4.56177 

 
The effect of changing elastic parameters and changing H1 

(for fixed Ec) and changing R* (for fixed Ec) and changing Ec 
(for fixed H1), on the values of the amplitude and phase of the 
rate of heat transfer is shown in Tables III, IV and V. In Table 
III, it is observed for a viscoelastic an Oldroyd fluid, the 
increase in Hartmann number decreases the amplitude of heat 
transfer at both the plates.   It may be observed from Table IV 
that at the lower plate there is a phase lag at higher frequency, 
but at the upper plate there is a phase lead. We also find that at 
both the plates the amplitude decreases uniformly with 
frequency for fixed Ec. It can be noticed from Table V for 
fixed R* that the amplitude increases uniformly with Ec at both 
the walls. The increase of the Eckert number Ec increases the 
amplitude of heat transfer at the plates for the viscoelastic 
fluid, while the phase at the plates remains unaffected by the 
increase of Ec. 

 
TABLE III 

PR = 200, R* = 10, F1 = 0.1, F2 = 0.5, EC = 3 

H1 

0D
 1D

 

tan α0 tan α1 

0 0.261855 0.0231703 -29.0306 12.9313 

0.2 0.260977 0.0231044 -28.8304 12.8729 

0.4 0.258385 0.0229097 -28.2463 12.7017 

                           
TABLE IV 

PR = 200, F1 = 0.1, F2 = 0.4, H1 = 0.3, EC = 5. 

R* 
0D

 1D
 

tan α0 tan α1 

5 2.73881 0.265488 -61.0054 5.35171 

10 0.649884 0.0575502 -25.151 14.5618 

15 0.29009 0.0244279 -29.1139 33.4444 
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TABLE V 
PR = 200, F1 = 0.1, F2 = 0.5, H1 = 0.2, EC = 5. 

Ec 
0D

 1D
 

tan α0 tan α1 

5 2.74875 0.266414 -84.1425 5.12845 

10 5.49751 0.532828 -84.1425 5.12845 

15 8.24626 0.799242 -84.1425 5.12845 
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