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Abstract—Bearing components of jet propelled and hydrogen 
engines, atomic and heat power plants, technological lines of 
processing industries, as well as internal combustion engines work in 
complicated thermal area. Reliable operation of these structures will 
depend on thermo-stress condition of bearing components. Therefore 
this research is dedicated to numerical study of thermo-stress 
condition of bearing components of structures in the form of limited 
length rods constrained from both ends. Herewith the rod is under 
influence of local temperature and heat exchange. Apart from this the 
rod under study is made of heatproof material ANV-300. 
Particularity of this material is that temperature expansion coefficient 
of the rod material depends on the temperature. The offered 
computational algorithm is based on the energy conservation 
principle. Herewith all types of integrals in energy functional 
formulas are integrated analytically. Where upon the acquired 
numerical solutions will be of high accuracy. 

Keywords—heatproof material, local temperature, heat 
exchange, movement, deformation, stress, forces 

I. INTRODUCTION 
N many strategic constructions rods made of heat resistant 
alloys are used as supporting elements. Nowadays for this 

purpose special ANB-300 type heat resistant alloys are widely 
used. In these alloys the value of thermal expansion 

coefficient 







C
1α  strictly depends on temperature. In 

research paper [1] α -values are provided at various 
temperatures. Based on experimental materials a 
corresponding functional relationship may be developed:    
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Now let’s consider a limited length horizontal rod made of 

ANB-300 type heat resistant alloy.  Let’s designate the rod 
length as )(cmL , and cross section areas as )( 2cmF . Let’s 
designate rod material thermal expansion coefficient as 







=
С

хТ


1))((αα . Rod material heat conductivity coefficient as 









⋅ Сcm
WK xx 

. Let’s assume the left end of the rod under 

consideration rigidly fixed whereas the right end as loose. 
Axial tensile force P (kg) is applied on the free end. Let’s 
direct axis Ох from the left to the right. It coincides with the 
rod axis. Heat exchange with the environment takes place 
across the rod entire length throughout the lateral area as well 
as cross section area of the rod right end. Herewith 
environment temperature )( CTос

 , whereas  heat exchange 
coefficient 









⋅ Сcm
Wh

2
. Constant temperature 1)0( TxT ==  is 

set on the rod left fixed end. A computational model for 
solving the problem under consideration is provided in the 
Fig. 1. 
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1)0( TxT ==  

 

 
 
 
 
 
 

 
Fig.1 Computational model  for solving the problem under 

consideration. 
 
Now it’s required to determine temperature distribution law 

across the tested rod length, as well as how the rod stretching 
value depends on the set temperature value 1)0( TxT == . At 
the same time one should consider natural dependency of the 
rod material thermal expansion coefficient on temperature. 
For this purpose to begin with let’s discretize the rod under 
study on n-elements with the same length )(cm

n
L

= . Let’s 

consider one discrete element. Let’s approximate temperature 
distribution field within each local element using a complete 
polynomial of the second kind , that is 

,)( 2 cbxaxxT ++=  ,0 ≤≤ x  5    (1) 

 
If we assume within one local element limits:  
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Then we may rewrite (1) within the given element in the 
following form    

,)()()()( kkjjii TxTxTxxT ⋅+⋅+⋅= ϕϕϕ  ≤≤ x0     (3) 

Where ),(xiϕ  )(xjϕ  and )(xkϕ  are approximate spline 

functions which are called form functions for a quadratic 
discrete element with three knots. They have the following 
appearance [2]. 
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(4) 
Then the temperature gradient within each element limits 

shall be determined as follows:   
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Now we shall write down a functional formula for (n-1) 
elements which specifies its heat energy in full extent:    
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Where );1(1 −÷= ni  iV - volume of i - discrete element; 

бПiS  - lateral area of i - element. 

Finally let’s write down functional analogous formula for 
n- discrete element [3]. 
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(7) 
where )( LxS = - cross section area of the rod right end 

through which heat exchange with the environment also takes 
place. Then for the entire rod under study the functional 
formula which specifies its full heat energy shall have the 
following form:    

∑
=
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                           (8) 

Minimizing J by temperature pivotal values we obtain a 
resolving system of linear algebraic equations:    
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        (9) 

Where i- starts changing beginning from 2, because 
)0(1 == xTT  is deemed already set. 

Temperature pivotal values shall be obtained through 
resolving the system (9) using Gauss method. Based on them 
for each local discrete element next integral is calculated the 
essence of which is the element’s elongation due to heat 
expansion effect:    

[ ][ ] 
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Then total elongation of the rod under study will be 
calculated using the following formula:   

∑
=
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n

i
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1
                    (11) 

Here we shall notice that at different values of set 
temperature 1)0( TxT == , a corresponding value ∆  is acquired.  

For the purposes of numerical investigation of dependency 
))0(( 1TxT ==∆=∆   let’s take the following reference data: 

);/(72 СсmWK xx
⋅=  );/(10 2 СсmWh ⋅=  ;40СToc =  

;)800100()0( 1 СTxT ÷===  ;30cmL =  ;300=n  

;1,0 сm
n
L
==  ;1сmr =  ;2 ππ == rF  ππ 22 == rP  

Based on these initial data temperature distribution field 
across the rod length is depicted in the Fig. 2. 
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TABLE I. DEPENDENCY BETWEEN 1T  AND T∆ , R , σ  

 
Fig. 2 shows temperature distribution field across the rod 

length at various 1T values, whereas Table 1 shows 
T∆  

values at various 1T values, that is dependency between 1T  

and T∆ , R , σ . As you one see from Fig. 2 temperature 
distribution field across the rod length will be a smooth curve. 
Graphical dependency between temperature source value 
( )1T  and corresponding rod elongation value ( )T∆  against 
heat expansion is shown in Fig. 3. 

At )(1001 CT = , beginning from )(5,15 сmx = , that is 
within section )(305,15 сmx ≤≤  constant temperature equaling 

to )(40 С≈  is observed. In this case due to heat expansion 
the rod elongates for )(014,0 cmT =∆ . To compare with it 
worth to mention that this elongation is equivalent to the rod 
stretching if it’s stretched out applying force )(66,2930 кgR = . 
Naturally based on Hooke’s law in this case tension stress to 
the extent of ( )2/33,933 сmкg=σ  would appear in the rod 
cross section. 

  At increasing the set temperature value twice as much, 
that is at )(2001 CT = within the section  

)(302,19 сmx ≤≤ , )(40 C - field temperature is observed. In 
this case the rod elongation value will be )(0165,0 сmT =∆  
and will be 17,657% more than at )(1001 CT = . This elongation 
value is equivalent to the rod stretching being under tensile 
load )(3454 кgR = . At the same time tension stress would be 

( )2/1100 сmкg=σ . If we increase the point temperature value 
three times as much that is at )(3001 CT =  value 

)(0193,0 сmT =∆ , that exceeds by 37,857% more than in the 
case at )(1001 CT = . It also worth to mention that in this case 
within the rod section )(301,21 сmx ≤≤  constant temperature 
close to the rod ambient temperature is observed. In this case 
value  T∆  is equivalent to the tested rod stretching under 
applied force  )(1,4040 кgR = . Herewith value of tensile 
stress appeared in cross sections would made up  

( )2/66,1286 сmкg=σ . It should be mentioned that for usual 
steels this tension have already exceeded the proportionality 
limit. 

 
Fig. 3  Graphical dependency between 1T  and T∆  

Now when we increase value 1T  four times as much, that is 
at )(4001 CT =  we have value )(02247,0 сmT =∆ . This is 
equivalent to the rod elongation at stretching it with force 
equaling to )(72,4703 кГR = . In this case tension stress 
equaling to ( )2/1498 сmкg=σ  would appear in the rod 
sections. Naturally for usual steels such tension deems failure 
stress. At )(5000 CT =  value )(02595,0 сmT =∆ . This is 85% 

more than the analogical value T∆  at )(1000 CT = . Here it 
should be noticed that in order to acquire the rod elongation at 
the extent of )(02595,0 сmT =∆  when stretching it should 
have been pulled with force equaling to  )(2,5432 кgR = . Then 
tension stress equaling to ( )2/1730 сmкg=σ  would appear in 
the rod sections which is quite intense for usual steel 
structures. It should be noted that at )(6001 CT =  value 

)(0297,0 сmT =∆  and it will be 112,14% more than value 

T∆  at )(1001 CT = . Equivalent stretching force would be 
equal to )(2,6217 кgR =  and corresponding tension stress 
will be equal to ( )2/1980 сmкg=σ . It’s interesting that at 

increasing temperature value 1T  from )(1001 CT =  to 

)(6001 CT = , values T∆ , R  and σ will increase to the 
same extent by 112,14%. 

It worth to mention that this approbated method for solving 
a complicated problem of steady-state thermomechanical 
conditions of structural elements is relatively universal in 
term of considering the existing diverse boundary conditions 
as well as controlling implementation of  energy conservation 
law throughout all computation stages. In this connection the 
obtained numerical solutions are characterized with high 
accuracy.    

II. CONCLUSIONS 
 The developed computational algorithm enables to 

numerically resolve nonlinear problems of stable thermo-
mechanical condition of load-carrying structure components 
at simultaneous presence of local heat insulations, 
temperatures, heat flows and heat exchanges. Herewith this 
algorithm enables to take into account natural dependency of 

No. )(1 CT   )(сmT∆
 

Equivalent 
“stretching” 

force )(кgR , at 

which such 
elongation would 

be obtained 

Equivalent 
“stretching 

stress” 
( )2/ сmкgσ  

)(сmT∆  

at 
== constα  

( )C°⋅= − /1101,10 6  

Specific 
elongation 

in % T

Tk




∆

∆
=

 

(times) 
 

1. 100 0,014 2930,66 933,33 0,0133 0,047 1,052 

2. 200 0,0165 3454 1100 0,0152 0,055 1,085 

3. 300 0,0193 4040,1 1286,66 0,0171 0,064 1,129 

4. 400 0,02247 4703,72 1498 0,0190 0,075 1,183 

5. 500 0,0259 5432,2 1730 0,0209 0,086 1,239 

6. 600 0,0297 6217,2 1980 0,0228 0,1 1,303 

7. 700 0,03388 7092,2 2258,66 0,0247 0,113 1,372 

8. 800 0,038 7954,66 2533,33 0,0267 0,127 1,423 
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the material temperature expansion coefficient against the 
temperature. The acquired solutions are characterized with 
increased accuracy. 
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