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Abstract— We apply the spectral method to solve the time-

fractional heat equation (T-FHE) with nonlocal condition which is 

utilized in different engineering and bio-science applications. In 

order to achieve highly accurate solution of this problem, the 

operational matrix of fractional derivative (described in the Caputo 

derivative sense) of Bernstein polynomials are used. For 

demonstrating the validity and applicability, numerical example is 

presented. 
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I. INTRODUCTION 

RACTIONAL differential equations have recently been 

applied in various area of engineering, science, finance, 

applied mathematics, bio-engineering and others [1], [2], [3], 

[4], [5]. In this paper, we consider the T-FHE with the 

nonlocal condition: 
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 where   is a parameter describing the fractional derivative 

1<0  , 21,, ggf  are known functions, and the function 

u  is unknown.  

We give some basic definitions and properties of the fractional 

calculus theory. Caputo definition of the fractional-order 

derivative is defined as  
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where   is the order of the derivative and n is the smallest 

integer greater than  . For the Caputo derivative we have: 
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We use the ceiling function   to denote the smallest 

integer greater than or equal to   and }{0,1,2,...=0N . 

Recall that for N , the Caputo differential operator 

coincides with the usual differential operator of integer order. 

The article is organized as follows: In Section 2, we 

summarize the properties of Bernstein and shifted Legendre 

polynomials, and also apply the Bernstein operational matrix 

of fractional derivative in section 3. Section 4 is devoted to 

applying the Bernstein operational matrix of fractional 

derivative for solving time-fractional heat equation (T-FHE) 

with nonlocal condition. In Section 5,the our method is applied 

to one example. Also a conclusion is given in Section 6.  

II.   LEGENDRE AND BERNSTEIN BASIS 

 Bernstein polynomials of degree m , on the interval [0,1]  

as basis functions for the linear space of polynomials are 

defined as 
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 A polynomial )(xPm  of degree m  can be expressed as 
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 where transpose of the Bernstein coefficient vector 
TC  

and the Bernstein vector )(x  are given by 

],,...,,[= 10 m

T cccC                                                        (8) 
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 The product of Bernstein polynomials is 
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Theorem 2.1  Let )(x  be Bernstein polynomial then 
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 where 
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derivative given by  
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 The Legendre polynomials constitute an orthonormal basis on 

the interval [0,1] , we define as follows  
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 The analytic form of the shifted Legendre polynomial )(xLi  

of degree i given by  
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 Note that 
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iL 1)(=(0)    and 1=(1)iL . The orthogonality 
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 A polynomial )(xPm  of degree m  can be expressed as  
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 where the shifted Legendre coefficient vector l  and the 

shifted Legendre vector )(x  are given by  
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 where matrix lD  is the 1)(1)(  mm  operational 

matrix of derivative of the shifted Legendre polynomials on 

the interval [0,1] given by  
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Lemma 2.2  Let )(xLi  be shifted Legendre vector and 

0>  then 
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lD  is the 1)(1)(  mm  operational 

matrix of fractional derivative of order   in Caputo sense and 

is defined as follows  
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where kji ,,  is given by 
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Note that in 
)(

lD , the first   rows, are all zero.  
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III.  OPERATIONAL MATRIX OF DIFFERENTIATION 

 By considering Legendre basis vector we have:  
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 where, W  and G  are 1)(1)(  mm  transforming 

matrices, and also 

lD  is a 1)(1)(  mm  matrix of 

operational matrix of fractional derivative of the shifted 

Legendre polynomials [5].  

IV. SOLUTION OF THE PROBLEM 

 Suppose )(x and )(t  are vectors of Bernstein 

polynomials on [0,1]. Now the unknown function ),( txu  in 

Eq. (1) can be approximated as  
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 where ix  and jt , are shifted points of jL . Collocating Eqs. 

(2) and (3) in 1m  points ix , 1,1,...,= mi  and m  

points jt , ,1,...,= mj  we gain  

 

,1,2,...,=   )(=)(1,   ),(=)(0, 10 mjtgtutgtu jjjj  (31) 

 1.1,...,=   ),(,1)(=,0)(  mixfxuxu iii  (32) 

 Hence we solve generated system.  

 

V.  NUMERICAL RESULTS 

    Example 5.1 We consider Eqs. (1)- (3) with 2<1   

and the given data: 
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 The exact solution is:  )(22 xsint  .  

 
TABLE I 

 ABSOLUTE VALUES OF ERROR FOR (0.5, )u t  FROM EXAMPLE 1 

x   
 0.1=t   0.2=t   0.3=t   

0.5  

9103.709    

9102.969    

93.24310
  

    

 

0.4=t   0.5=t   0.6=t   

 

9103.918    

9105.040   

9106.484   

 

 

0.7=t  0.8=t  0.9=t  

 

9108.306   

9101.0448   

8101.2913   

 

1=t   

  

 

9101.0448    

  

 

VI.  CONCLUSION 

The properties of the Bernstein polynomials are used to 

solve time-fractional heat equation (T-FHE) with nonlocal 

condition by reducing the problem to the system of equations. 

From the solutions obtained using the suggested method we 

can conclude that these solutions are in excellent agreement 

with the exact solution. 
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