

Abstract— In the last few years, the popularity of online degrees

has dramatically increased due to the higher cost of education and

the increased number of adult students. In the current online

education model, the school specifies the courses required to obtain

a degree. For each course, the instructor specifies the course

elements including teaching method and assessments. But different

students have different capabilities and constraints. Most institutions

provide the same courses. A student should be able to select the

course that best matches his capabilities and constraints as long as it

satisfies the required course outcomes. To achieve this goal, we

propose the use of Service-oriented Architecture (SOA). This paper

introduces an extended service-oriented architecture. The elements

of the architecture and an extended service definition model is

discussed in this paper.

Keywords— Student-oriented, SOA, Context, Service Model.

I. INTRODUCTION

HE last few years have seen dramatic changes in higher

education. The cost of edu- cation has been increasing.

The demand for college graduates has also been

increasing which resulted in larger number of adult students.

All of this led to a dramatic increase in online education.

Many institutions are providing online degrees and the

number is increasing every semester. A lot of these institutions

provide similar degrees including similar courses.

With current online degrees, a school defines the classes a

student needs to take to complete a degree. For each course,

the instructor defines the elements of the teaching process

with respect to instruction method, assessment types and

schedule.

But research in education has long proved that different

students have different capabilities and needs. Students have

different learning pace and styles. With the current online

learning model this is not considered. A student should be

able to choose a course from any institution. The course that

best matches its capabilities and needs. The only constraint is

that the course should satisfy the required outcomes. We call

this model student-oriented learning.

To achieve the student-oriented learning model, this

research suggests the uses of Service-oriented Computing

(SOC) [1]. SOC is a computing paradigm that uses service as

the fundamental element for application development

processes. An architectural model of SOC in which service is

a first class element is called Service-oriented Architecture

1Department of Computer Science and Software Engineering, School of

Engineering, Penn State Behrend, Erie, PA, USA

(SOA) [2]. We believe a course can be represented as a

service and can be provided by a service-oriented architecture.

Current service-oriented architectures in its current state are

not sufficient for achieving this goal. The provision of

services in such architectures depends on the functionality of

the service which is not enough. Hence, in Section 2, we

propose an extended service-oriented architecture (ESOA).

In the newly introduced ESOA, a course is specified as a

service. But current service definitions are not rich enough.

Hence, in Section 3, we extended the definition of a service by

including the concept Context to support the rich definition of

courses. We represent student capabilities and constraints

using the concept ”Context”. Context has been defined [3] as

the information used to characterize the situation of an entity.

This entity can be a person, a place, or an object. The context

representation and the logic of context proposed by Wan [4]

for reasoning about context-awareness are suitable formalisms

for enriching SOA modeling. The extended service is defined

formally to support formal verification.

In ESOA, a course requester can specify his requirements

using a rich definition. Section 4 introduces a Student-oriented

course definition. It gives a brief overview of how a course

requester can specify all his requirements and needs.

In ESOA, there is a Unit that is responsible for mapping the

course requester needs with available courses. It is also

responsible for ranking courses and composing them if

necessary. This unit is called the Course Mapping Unit.

Section 5 provides a discussion of the unit and its

functionality.

Section 6 presents a brief study of related service definition

approaches and compositions. Finally, Section 7 presents

some concluding remarks and future work..

II. EXTENDED SOA

Traditional SOA model consists of three main modules, the

service provider, the service requester and the service registry.

The service provider publishes a service definition in the

service registry. The service requester searches the service

registry and selects from the published services. After

selecting a service, the service requester interacts with the

service provider by sending requests and receiving responses.

In traditional SOA, the publication, discovery and execution

of services are heavily based on the functionality of the

services. The service provider publishes the functionality of

the service in the registry. The service requester searches the

registry looking for services that matches its requirements in

A Service-oriented Architecture for Student-

Oriented Courses

Naseem Ibrahim
1

T

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 2, Issue 2 (2015) ISSN 2349-1469 EISSN 2349-1477

http://dx.doi.org/10.15242/IJCCIE.U1215007 234

terms of functionalities. But such architectures are not

sufficient for the publication of our student-oriented courses.

Hence, this section introduces an Extended SOA (ESOA) that

supports student-oriented courses.

ESOA enables course providers to define rich courses for

the provision of student- oriented courses. It also enables

course requesters to obtain courses that best match their

requirements while considering their capabilities and

constraints. Fig 1 shows the architecture of ESOA. ESOA

consists of the following elements:

1. Course Requester: It is the entity that is requiring a course.

It represents the client side of the interaction. It is usually a

student who is looking for a course that best meets his

requirements while respecting the student’s capabilities and

constraints.  

2. Course Provider: It is the entity that provides a course.

Course providers publish course descriptions on registries

to enable automated discovery and invocation.  

3. Student-oriented Course Requirement Definition: In

ESOA, a course requester   is able to specify and list all

the course requirements, his capabilities and constrains   in

a rich definition. This entity enables this rich definition.  

4. Student-oriented Course Definition: To enable the best

possible matching and   discovery of courses, course

providers has to publish a rich definition of a course.

Traditional definition of services that relay on service

functionality is not sufficient. Hence, a rich course

definition is required. This entity is responsible for

achieving this.

Fig. 1: Extended SOA Architecture

5. Course Registry: This entity is responsible for enabling the

discovery of student- oriented courses. Course providers

publish their rich course definition in the course registry.

The course mapper searches the course registry looking for

courses that matches the course requester requirements

while respecting the course requester capabilities and

constraints.  

6. Course Mapper: This unit is responsible for three main

roles. First, it matches the requirements of the course

requester to the available course in the course registry. The

novelty in the matching process is that is does not only

focus on the functional requirements, it takes into

consideration the capabilities and constraints of the course

requester. Second, it ranks available courses is case of

multiple matches. Third, it enables the composition of

courses.

III. STUDENT-ORIENTED COURSE DEFINITION

As presented in the previous section, a course provider

describes a course using a student-oriented course definition.

This section extends traditional services to specify student-

oriented courses.

In a traditional service the main component of a service is

the functionality. But this is not sufficient for the specification

of our rich student-oriented courses. Hence, we extend

traditional services by adding nonfunctional properties,

attributes, context, and legal rules. These elements are

encapsulated in what is called ExtendedService. An

ExtendedService is divided into the following parts, as shown

in Fig 2.

1. Functionality: Its definition includes the function

signature, result, precondition and postcondition. The

signature part defines the function identifier, the invocation

address, and the parameters of the function. The function

invocation has the same effect as in a programming

environment, since service function is an autonomous

program. Each parameter has an identifier and a type. The

result part defines the returned data of the service function.

The precondition should be made true, either by the service

provider or the consumer, in order to make the function

available. The postcondition is guaranteed by the service

provider to be true after service execution

Fig. 2: ExtendedService Structure

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 2, Issue 2 (2015) ISSN 2349-1469 EISSN 2349-1477

http://dx.doi.org/10.15242/IJCCIE.U1215007 235

2. Nonfunctional properties: The nonfunctional properties

associated with the service are listed in this section.

Pricing information, which can itself be a complex property

expressing different prices for different amount of buying, is

an example of nonfunctional property.

3. Attributes: Every attribute is a type-value pair. Attributes

provide sufficient information that is unique to a service. As

an example, for providing a course the appropriate attributes

may include title of course and institution name.

4. Legal issues: Business rules and trade laws that are

enforced at the locations of service provision and service

delivery are included in this section. Example policies govern

refund, administrative charges, penalties, and service

requesters rights. Such rules are expressible as logical

expressions in predicate logic.

5. Context: The context part of the contract is divided into

context info and context rules. The contextual information of

the service provider is specified in the context info section.

The situation or context rule that should be true for service

delivery is specified in context rules section. It is the

responsibility of the service requester to validate the context

info for obtaining the service, and it is the responsibility of the

service provider to validate the context rules at service

delivery time.

Example 1. Fig 3 illustrates an example of a service that was

modeled using the novel ExtendedService definition. The

service is for a Programming II course that is being provided

by USA University.

IV. COURSE MAPPING UNIT

The course mapping unit is responsible for three main roles.

First, it matches course re- quests with available courses in the

course registry. Second, it ranks candidate services. Third, it

composes multiple courses if necessary. Below is a brief

discussion of these roles.

4.1 Course Matching

The Mapping Unit received course requests from the course

requester. It will then con- tact the course registry looking for

services that provide the same course. The registry will

respond with all services that provide the required course.

Fig. 3: Programming II Extended Service

The service requester can specify an Exact match for all his

requirements. In this case, the mapping unit will match the

requirements with the candidate courses and filter the courses

that provide the exact match. It then passes the candidate

courses to the course requester

4.2 Course Ranking

In many cases, no exact match is possible or the course

requester set weights that are not Exact for all the

requirements. In such cases the mapping unit ranks candidate

services. The ranking algorithm takes into consideration all

the requirements of the course requester and the weights

assigned. It will then pass the set of ranked courses to the

course requester. A course that provide a closer match to the

requirements will be listed first while the course that provide

the least match to the requirements will be ranked last

4.3 Course Composition

In some cases, no single course can meet the requirements

of the course requester. Hence, a composition of multiple

courses is necessary. This is performed by the Map- ping Unit.

The Course Mapping unit creates a course expression

involving the names of ExtndedServices and composition

constructs. All composition constructs in a course expression

have the same precedence, and hence a course expression is

evaluated from left to right. To enforce a particular order of

evaluation, parenthesis may be used. The result of evaluating a

course expression is a ExtendedService.

In the context of courses, two types of compositions are

necessary sequential and parallel. In sequential compositions

one course is a prerequisite for another course. In a parallel

composition two courses can be completed concurrently.

1. Sequential Construct ≫: Given two ExtendedServices A

and B, the service expression A ≫ B defines an

ExtendedService C which is the sequential composition of A

and B. The intended execution behavior of the

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 2, Issue 2 (2015) ISSN 2349-1469 EISSN 2349-1477

http://dx.doi.org/10.15242/IJCCIE.U1215007 236

ExtendedService C is the execution behavior of B after the

execution of A.

2. Parallel Construct ||: Given two ExtendedServices A and B,

the service expression A||B defines the parallel composition

of A and B. The parallel composition A||B service models

the concurrent executions of ExtendedServices A and B.

Therefore, the resulting behaviour of this composite service

should be the merging of their individual behaviours in time

order

V. STUDENT-ORIENTED COURSE REQUIREMENT DEFINITION

In ESOA, a course requester specifies his requirements and

constraints and passes them to the Course Mapping unit. The

specification of the requirements and constrains is done using

the Student-oriented Course Requirement Definition

(SOCRD).

Fig 4 shows the structure of a course request defined using

SOCRD. Each course request will consist of the four parts

required function, required legal issues, required

nonfunctional properties, and requester and consumer

context. The course requester is responsible for defining these

requirements.

Fig. 4: Course Request Structure

The course requester can also assign a weight to each

requirement. This weight defines the priority of each

requirement and is used in ranking the set of candidate course

when the Course Mapping unit performs matching.

1. Required Function: The required functional properties

define the functionality required by the course requester and

is defined in terms of the functionality name, preconditions

and postconditions. For each element the service requester

can as- sign a weight.  

2. Required Nonfunctional Properties: The required

nonfunctional properties defines the nonfunctional

properties required by the course requester. The definition

of the nonfunctional properties in SOCRD is identical to the

definition of the non- functional properties in

ExtendedService. The only exception is the addition of the

weights.  

3. Required Legal Issues: This section contains the required

legal rules specified by the course requester. Its definition is

also identical to the definition in ExtendedService with the

addition of the weights.  

4. Required Context: This section includes the contextual

information of the course requester and provider. It also

uses the same definition of the contextual information in

ExtendedService. A weight value can also be added to each

requirement.

VI. RELATED WORK

Related SOA, such as eFlow [5], SELF-SERV [6] and

SWORD [7] do not provide support for including contextual

information. On the other hand, frameworks such as SeGSeC

[8], SHOP2 [9] and Argos [10] do provide some support to

include contextual information but context is not formally

represented and the relationship between the service elements

is never considered. To our knowledge, no published

framework supports all the features of ESOA. Hence, ESOA is

novel in its ability to support the provision and discovery of

student-oriented courses

VII. CONCLUSION AND FUTURE WORK

To support the publication, discovery and provision of

student-oriented courses, this paper has presented an extended

service-oriented architecture (ESOA). It has also presented an

ExtendedService model for the specification of student-

oriented courses. The other elements of the ESOA has also

been discussed including the Course Mapping Unit and the

Course Requirements Definition. We are currently working on

a complete implementation of the newly introduced

architecture and associated tools.

REFERENCES

[1] D. Georgakopoulos and M. P. Papazoglou, Service-Oriented

Computing. The MIT Press, 2008.  

[2] T. Erl, SOA Principles of Service Design. Upper Saddle River, NJ,

USA: Prentice Hall PTR, 2007.  

[3] A. K. Dey, “Understanding and using context,” Personal Ubiquitous

Comput., vol. 5, no. 1, pp. 4–7, 2001.

 http://dx.doi.org/10.1007/s007790170019  

[4] K. Wan, “Lucx: Lucid enriched with context,” Phd Thesis, Concordia

University, Montreal, Canada, January 2006.  

[5] F. Casati, S. Ilnicki, L.-j. Jin, V. Krishnamoorthy, and M.-C. Shan,

“Adaptive and dynamic service composition in eflow,” in Proceedings

of the 12th Int’l Conference on Advanced Info. Systems Engineering.

Springer-Verlag, 2000, pp. 13–31.

http://dx.doi.org/10.1007/3-540-45140-4_3

[6] Q. Z. Sheng, B. Benatallah, M. Dumas, and E. O.-Y. Mak, “Self-serv: a

platform for rapid composition of web services in a peer-to-peer

environment,” in Proceedings of the 28th inter- national conference on

Very Large Data Bases. VLDB Endowment, 2002, pp. 1051–1054.

http://dx.doi.org/10.1016/b978-155860869-6/50106-2  

[7] S. R. Ponnekanti and A. Fox, “Sword: A developer toolkit for web

service composition,” in Proceedings of the 11th International WWW

Conference, 2002.  

[8] K. Fujii and T. Suda, “Semantics-based context-aware dynamic service

composition,” ACM Trans. on Autonomous and Adaptive Systems, vol.

4, no. 2, pp. 1–31, 2009.

http://dx.doi.org/10.1145/1516533.1516536  

[9] D.Wu, B.Parsia, E.Sirin, J.Hendler, D.Nau, and

D.Nau,“Automatingdaml-swebservices composition using shop2,” in

Proceedings of 2nd International Semantic Web Conference, 2003.  

[10] J. L. Ambite and M. Weathers, “Automatic composition of aggregation

workflows for transportation modeling,” in Proceedings of the 2005

national conference on Digital government research. Digital

Government Society of North America, 2005, pp. 41–49.

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 2, Issue 2 (2015) ISSN 2349-1469 EISSN 2349-1477

http://dx.doi.org/10.15242/IJCCIE.U1215007 237

http://dx.doi.org/10.1007/s007790170019
http://dx.doi.org/10.1007/s007790170019
http://dx.doi.org/10.1007/s007790170019
http://dx.doi.org/10.1007/3-540-45140-4_3
http://dx.doi.org/10.1007/3-540-45140-4_3
http://dx.doi.org/10.1007/3-540-45140-4_3
http://dx.doi.org/10.1007/3-540-45140-4_3
http://dx.doi.org/10.1007/3-540-45140-4_3
http://dx.doi.org/10.1016/b978-155860869-6/50106-2
http://dx.doi.org/10.1016/b978-155860869-6/50106-2
http://dx.doi.org/10.1016/b978-155860869-6/50106-2
http://dx.doi.org/10.1016/b978-155860869-6/50106-2
http://dx.doi.org/10.1016/b978-155860869-6/50106-2
http://dx.doi.org/10.1145/1516533.1516536
http://dx.doi.org/10.1145/1516533.1516536
http://dx.doi.org/10.1145/1516533.1516536
http://dx.doi.org/10.1145/1516533.1516536

