
  
Abstract—Pressure profiles of fluids flowing in channels and 

crevices are generally calculated from the conservation laws of mass, 
momentum and energy formulated in terms of partial differential 
equations which are valid in the case of continuum flows. For flows 
at small length scales and/or low pressures the continuum assumption 
breaks down and the flow physics has to utilize alternative 
mathematical formulations. In this paper we consider an integral 
equation that models the micro-fluidic gas flow in a concentric 
annulus channel where the flow varies from a continuum viscous 
flow at the inlet to a non-continuum molecular flow regime at the 
outlet and numerically approximate a solution to the associated 
system of nonlinear equations. Results of the mixed continuum/non-
continuum flow pressure profile are compared to the Navier-Stokes 
based isothermal compressible flow pressure profile and validity 
accuracy limits are established for micro-fluidic simulations.       
 

Keywords—homotopy method, micro-fluidics simulations, non-
continuum gas flow, nonlinear integral equation.  

I. INTRODUCTION 
HE calculation of fluid pressure profiles in mechanical 
equipment is generally calculated in terms of solutions of 

the mass, momentum and energy equations which are 
formulated in terms of partial differential equations utilizing 
the assumption of a mathematical continuum [1]. For a 
majority of engineering applications in macroscopic problems 
this modeling approach is valid but in the case of small length 
scales and/or low pressures the assumption of a fluid 
continuum breaks down and alternative mathematical 
formulations become necessary in order to adequately capture 
the underlying flow physics such as gas rarefaction effects, 
velocity slip and temperature jumps. This deviation of real 
fluid flow physics from ideal continuum flows is particularly 
evident in micro-electromechanical systems (MEMS) such as 
in precision pressure equipment, micro-machining, semi-
conductor manufacturing, and in certain sub-systems of 
existing equipment such as ink printers whose constituent 
components must be analyzed in terms of micro-fluidic 
processes and behaviors.     

The defining specification for determining the degree to 
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which a flow may be characterized as a continuum is in terms 
of the Knudsen number 𝐾𝑛 =  ℓ/𝐿 where ℓ is the mean free 
path length and 𝐿 is a characteristic length of the system being 
studied where the range of the Knudsen number specifies the 
flow regime as approximately 0 ≤ 𝐾𝑛 ≤ 0.001 for 
continuum flow, 0.001 ≤ 𝐾𝑛 ≤ 0.1 for slip flow, 0.1 ≤
𝐾𝑛 ≤ 10 for transitional flow, and 10 < 𝐾𝑛 for free 
molecular flow following [2]. The mean free path length may 
be estimated from the kinetic theory of gases as ℓ =
 𝜈�𝜋𝑀 2𝑅𝑇⁄  where 𝜈 = 𝜇 𝜌⁄  is the kinematic viscosity, 𝜇 is 
the dynamic viscosity, 𝜌 is the mass density, 𝑀 is the molar 
mass, 𝑅 = 8.314472 J mol−1 K−1 is the universal gas 
constant, and 𝑇 is the absolute temperature.  

Alternative PDE formulations to the well known Navier-
Stokes equations may be utilized for higher Knudsen numbers 
and include the extended Navier-Stokes equations which 
utilize higher order boundary and nonlinear boundary 
conditions, Burnett hydrodynamics, Grad equations and more 
recently the regularized 13-moment (R13) equations which are 
refinements of the original Grad equations and which are all 
derived from the underlying Boltzmann equation from 
statistical mechanics using various approaches [3]. The 
limitation with the use of a particular PDE choice is that the 
validity of the underlying equation is restricted to a range of 
Knudsen numbers which for example with the Burnett 
equations is specified as 0 ≤ 𝐾𝑛 ≤ 0.3 [4] or equivalently 
for a limited pressure range. As a result in the case of flows 
which range from a viscous continuum to a free molecular 
flow it is not possible to use a single governing differential 
equation that can adequately model the behavior of the gas. In 
the absence of solving the complete integro-differential 
Boltzmann equation, which is both mathematically complex 
and well as computationally expensive, alternative 
mathematical models to partial differential equations are 
possible drawing from the area of rarefied gas dynamics. 

 Building on earlier work reported in [5] and [6] which 
provides a comprehensive review of rarefied gas flows for 
various geometries and configurations, later research for the 
study of gas flows in a concentric annulus channel in the 
context of pressure balance pressure standards drawing on 
theoretical and experimental studies developed an integral 
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equation for the mathematical model of the pressure profile 
first in the special case for parallel plate geometries in [7], and 
then for the more general case for spatially varying geometry 
profiles in [8] and [9] respectively which is the mathematical 
model that we will study in this paper. 

  

II. MATHEMATICAL MODEL AND FRAMEWORK 
Following [9] the model for the mixed continuum/non-
continuum pressure profile in the interface gap of a piston-
cylinder pressure balance as illustrated in Fig. 1 is expressed 
in terms of the nonlinear integral equation  
 

𝑝(𝑥) =  𝑝1 −  (𝑝1 −  𝑝2) ∫ [𝐹(𝑥)]−1d𝑥𝑥
0

∫ [𝐹(𝑥)]−1d𝑥𝐿
0

                                     (1) 

𝐹(𝑥) = 𝑐[ℎ(𝑥)]2 �0.09837𝑓(𝑥) +  1+2.5117𝑓(𝑥)
1+3.1019𝑓(𝑥)

�                  (2) 

𝑓(𝑥) =  ℎ(𝑥)
ℓ(𝑥)

=  ℎ(𝑥)𝑝(𝑥)
𝑐𝑔

                                                          (3) 

 
In the above system of equations 𝑝(𝑥) is the unknown 

pressure profile that must be solved for,  𝑝1 is the constant 
inlet pressure, 𝑝2 is the constant outlet pressure, 𝐹(𝑥) is the 
flow conductance, ℎ(𝑥) is the interface gap along the length of 
the channel through which the gas flows and is a known 
function, 𝑓(𝑥) is the reciprocal of the instantaneous Knudsen 
number 𝐾𝑛 along the gas path in the channel, 𝑐𝑔 is a constant 
for the particular choice of gas species used, and 𝑐 is a 
constant which is not relevant as it factors out and then cancels 
out from the ratio of the flow conductance integrals.    

The parameter 𝑐𝑔 may be calculated by substituting and 
rearranging terms in the expression for the mean free path 
length ℓ to calculate the reciprocal of the Knudsen number as  

 

𝑓(𝑥) =  �2𝑀
𝜋𝑅𝑇

∙ 𝑝(𝑥)ℎ(𝑥)
𝜇

                                                           (4) 

 
For the calculation of gas viscosity we opt to use the 

Sutherland formulae [1] as   
 

𝜇
𝜇0

=  �𝑇
𝑇0
�
3/2 𝑇0+ 𝑆

𝑇+𝑆
                                                                  (5) 

 
where for dry nitrogen gas which we set as the fluid 

medium where 𝜇0 = 1.663 ×  10−5  N ∙ s m2⁄ , 𝑆 = 107 K and 
𝑇0 = 273 K so that the gas viscosity calculated as 𝜇 =
 𝜇0(𝑇 𝑇0⁄ )3/2 ∙ (𝑇0 +  𝑆) (𝑇 + 𝑆)⁄   at a standard temperature of 
20 ºC is 𝜇 = 17.572918 ×  10−6 Pa ∙ s and hence  

 

𝑐𝑔 =  𝜇�𝜋𝑅𝑇
2𝑀

= 0.006500 Pa ∙ m                                      (6) 

 
which is in agreement with values reported in the literature 

for nitrogen gas [10] and thus demonstrates that the model 
may be utilized to study gas species effects for different 
choices of gases such as helium or argon. 

For the compressible continuum gas flow as formulated  

 
Fig. 1. Illustration of a concentric annulus channel that approximates 
the interface gap of a piston-cylinder pressure balance that is modeled 

as two concentric surfaces of revolutions from the inner and outer 
radial profiles 

 
from the Navier-Stokes PDE’s the pressure profile is 

explicitly expressed as 
 

𝑝(𝑥) =  �𝑝12 −  (𝑝12 −  𝑝22) ∫
[ℎ(𝑥)]−3𝑥

0 d𝑥

∫ [ℎ(𝑥)]−3𝐿
0 d𝑥

�
1/2

                             (7) 

 
as discussed in [11] where the ultimate physical objective in 
this paper  is to compare the profiles that are mathematically 
solved by (1) and (7) for continuum/non-continuum and 
continuum flows respectively.   
 Analyzing the form of (1) we observe that it is formulated 
as a nonlinear integral equation that is not directly 
immediately identified as either a Fredholm or Volterra 
integral equation since the general form for these equations of 
the second kind are 
 
𝑢(𝑥) =  𝜆 ∫ 𝐾(𝑥,𝑦)𝑢(𝑦)d𝑦 + 𝑓(𝑥)𝑏

𝑎                                      (8) 
𝑢(𝑥) =  𝜆 ∫ 𝐾(𝑥,𝑦)𝑢(𝑦)d𝑦 + 𝑓(𝑥)𝑥

0                                      (9) 
 

where 𝑢(𝑥) is the unknown function that must be 
determined, 𝐾(𝑥,𝑦) is the kernel, 𝜆 is a known coefficient, 
and 𝑎 and 𝑏 are known fixed integration limits. As a result the 
conventional solution approaches for Fredholm and Volterra 
equations are not immediately accessible for (1) since it is a 
type of hybrid Fredholm/Volterra equation. Due to the form of 
(1) we immediately exclude Runge-Kutta type solutions which 
reformulate the integral equation as an equivalent differential 
equation and discount the possibility of an Adomain 
decomposition approach i.e. a series limit of form 𝑢(𝑥) =
 lim𝑛→∞{∑ 𝑢𝑖(𝑥)𝑛

𝑖=0 } due to the symbolic computational cost 
required from a computer algebra system implementation.  

We observe that whilst [𝐹(𝑥)]−1 is unknown since it 
incorporates the unknown pressure profile 𝑝(𝑥) that the 
integral 
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∫ [𝐹(𝑥)]−1d𝑥𝐿
0 = 𝐶                                                               (10) 

 
evaluates to is a fixed but unknown constant 𝐶 so that the 

original equation may be reformulated as  
 
𝑢(𝑥) =  𝜙(𝑥) +  𝜆 ∫ 𝐺[𝑥,𝑦,𝜙(𝑦)]d𝑦𝑥

𝑎                                 (11) 
 

where for convenience we have set 𝑝(𝑥) =  𝑢(𝑥) as the 
unknown function, 𝑓(𝑥) =  𝜙(𝑥) as a known source function, 

 
𝜆 =  −(𝑝1− 𝑝2)

∫ {𝐹(𝑥)}−1𝑑𝑥𝐿
0

                                                                   (12)   

 
as an unknown constant, and  
 

𝐾[𝑥,𝑦,𝜙(𝑦)] =  {𝐹(𝑥)}−1                                                   (13) 
 
as the kernel for the integral equation.  Equation (11) is now 

in the general form for a nonlinear integral equation. 
Considering the method of successive approximations as 
discussed in [12] we have  

 
𝑢𝑖(𝑥) = 𝜙(𝑥) +  𝜆 ∫ 𝐾[𝑥,𝑦,𝑢𝑖−1(𝑥)]d𝑦𝑥

𝑎                            (14) 
 

from which it is seen that the original equation may be 
reformulated as a nonlinear Volterra integral equation and 
solved in the event that the constant 𝜆 is known.  

The main challenge in applying a successive approximation 
is in calculating 𝜆 which may be attempted by setting 
d𝜆 d𝑥⁄ = 0 by the application of Leibnitz’s rule but this 
approach does produce any beneficial results. A practical 
heuristic type approach is to set 𝜆 = 1 and incorporate the 
−(𝑝1 −  𝑝2) ∫ 𝐹−1d𝑥𝐿

0�  integral term directly into the 
nonlinear kernel 𝐾[𝑥,𝑦,𝜙𝑖−1(𝑥)] by using the compressible 
continuum flow pressure profile expression in (7) as a starting 
solution in the iteration.   

Another alternative is to note that the integral equation is 
defined for 𝑥 ∈  [0, 𝐿] so in the presence of an unknown 𝜆 one 
may from an approximation functional theory perspective 
minimize the least squares norm of an error term 𝑒(𝑥) on 
𝐿2[0, 𝐿] by defining    

 
𝑒(𝑥) = 𝑝(𝑥) −  �𝑝1 +  𝜆 ∫ 𝐹−1d𝑥𝐿

0 �                                     (15) 
 

and then minimizing its norm ‖𝑒(𝑥)‖ =

 �∫ |𝑒(𝑥)|2𝑑𝑥𝐿
0 �

1/2
as a simple optimization problem in terms 

of the parameter 𝜆 using an approximate range 𝜆 ∈
 [𝜆min, 𝜆max] where again a starting choice of 𝜆 may be 
obtained from the continuum flow pressure profile in (7) and 
the limits for 𝜆min and 𝜆max set by convenient a prior 
estimates of the error between the continuum and 
continuum/non-continuum pressure profiles.  

Although these approaches in solving the original nonlinear 

integral equation all have their respective merits in this paper 
we adopt the use of a conventional Nystrom quadrature 
approach, and utilize the homotopy analysis method (HAM) as 
a convenient potential numerical approach for controlling the 
convergence of the resultant simultaneous system of nonlinear 
equations.   

For the special case in HAM problems where the homotopy 
analysis control parameter ℏ is utilized the numerical solution 
of the system of nonlinear equations reduces to the use of 
standard solution algorithms such as Newton’s method for 
ℏ = 0 or Chebyshev’s method for  ℏ = −1 as discussed in 
[17].    

III. NUMERICAL DISCRETIZATION AND SOLUTION 
The challenge of applying a conventional Gauss-Legendre 

numerical quadrature scheme with a weighting term 𝑐𝑖 =
 ∫ ∏ 𝑥− 𝑥𝑗

𝑥𝑖− 𝑥𝑗
d𝑥𝑗=1,𝑗≠𝑖

1
−1  so that ∫ 𝑓(𝑥)𝑑𝑥 =  ∑ [𝑐𝚤�𝑓(𝑥𝚤�)]𝑛

𝑖=1
𝑏
𝑎  

where for convenience 𝑐𝚤� =  𝑏−𝑎
2
𝑐𝑖  and 𝑥𝚤� =  1

2
[(𝑏 − 𝑎)𝑥𝑖 +

 ( 𝑏 + 𝑎)] is due to the presence of the pressure 𝑝(𝑥) in the 
flow conductance 𝐹−1(𝑥) term which is defined in terms of 
the reciprocal of the Knudsen number 𝑓(𝑥) =  ℎ(𝑥)𝑝(𝑥) 𝑐𝑔⁄ .  

We observe that if one applies a Gauss-Legendre quadrature 
scheme then the spatial coordinate 𝑥𝑖 when transforming the 
integral ∫ 𝑓(𝑥)d𝑥𝑏

𝑎  to a standard integral range ∫ 𝑃(𝑥)d𝑥1
−1  is 

mapped using a simple change of variables as 𝑡 =  2𝑥−𝑎−𝑏
𝑏−𝑎

 ⇌

𝑥 =  1
2

[(𝑏 − 𝑎)𝑡 + 𝑎 + 𝑏]. The difficulty that this poses is that 
an evaluation of the pressure at a mapped position i.e. 𝑝(𝑥𝚤�) is 
then necessary however the left hand side term of the 
unknown pressure is evaluated at an unmapped 𝑥𝑖 whilst the 
right hand term in the integrals require an evaluation of the 
pressure at a mapped 𝑥𝚥� . Due to this additional complexity 
posed by the nonlinear Volterra type integral equation we opt 
for a straightforward composite trapezoidal integration 
algorithm with equidistant spacing for the domain as 
 
𝑥𝑗 =  𝑎 +  (𝑗 − 1)𝛿, 𝛿 =  𝑏−𝑎

𝑛−1
, 1 ≤ 𝑗 ≤ 𝑛, 𝑛 ∈  ℕ            (19)                                                                                           

 
to avoid complicating scaling factors between unmapped 

and mapped coordinates as  
 

∫ 𝑓(𝑥)d𝑥 =   𝛿
2

 �𝑓(𝑎) +  2∑ 𝑓�𝑥𝑗�𝑛−1
𝑗=1 + + 𝑓(𝑏)�𝑏

𝑎             (20)                    
                                                                         

following the discussion in [13]. The unknown pressures 𝑝𝑗 
will be calculated for the nodes 𝑥𝑗 where it is clear that nodes 
𝑥1 and 𝑥𝑛 correspond to the known inlet and outlet pressures 
𝑝1 and 𝑝2 respectively. Referring to (2), (3) and (6) we have 
the following system of equations as 

 

𝑢(𝑥) =  𝑝1 −  (𝑝1 −  𝑝2) ∫ 𝐹−1(𝑥)𝑑𝑥𝑥
0

∫ 𝐹−1(𝑥)𝐿
0 𝑑𝑥

                                    (21) 

𝐹(𝑥) =  [ℎ(𝑥)]2 �𝛼𝑓(𝑥) +  1+ 𝛽𝑓(𝑥)
1+ 𝛾𝑓(𝑥)

�                                   (22) 
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𝑓(𝑥) =  [ℎ(𝑥)]𝑢(𝑥)
𝑐𝑔

                                                                  (23) 

�𝛼,𝛽, 𝛾, 𝑐𝑔� =  [0.09837, 2.5117, 3.1019, 0.0065]           (24)  
 

 
Applying the composite trapezoidal algorithm (20) to the 
above flow conductance terms we have 
 

𝐹𝑖 =  ℎ𝑖2 �𝛼
ℎ𝑖𝑢𝑖
𝑐𝑔

+ �1 +  𝛽 ℎ𝑖𝑢𝑖
𝑐𝑔
� �1 +  𝛾 ℎ𝑖𝑢𝑖

𝑐𝑔
�
−1
�                 (25) 

∫ 𝐹−1𝑑𝑥𝐿
0 =  𝛿

2
[𝐹1−1 + 2(𝐹2−1 +  ⋯+ 𝐹𝑛−1−1 ) +  𝐹𝑛−1]         (26) 

∫ 𝐹−1𝑑𝑥𝑥𝑖
0 =  𝛿

2
[𝐹1−1 + 2(𝐹2−1 + ⋯+  𝐹𝑖−1−1 ) +  𝐹𝑖−1]         (27) 

 
and substituting the above results in the following 
simultaneous system of nonlinear equations as 
 
𝜑1 =  −𝑢1 + 𝑝1                                                                 (28a) 
  

𝜑2 =  −𝑢2 +  𝑝1 −  (𝑝1 −  𝑝2) �𝐹1
−1+ 𝐹2

−1�
�𝐹1
−1+2�𝐹2

−1+ ⋯+ 𝐹𝑛−1
−1 �+ 𝐹𝑛−1�

          

                                                                                            (28b) 
                                                                                 

𝜑𝑖 =  −𝑢𝑖 + 𝑝1 −  (𝑝1 −  𝑝2) �𝐹1
−1+2�𝐹2

−1+ ⋯+ 𝐹𝑖−1
−1 �+ 𝐹𝑖

−1�
�𝐹1
−1+2�𝐹2

−1+ ⋯+ 𝐹𝑛−1
−1 �+ 𝐹𝑛−1�

 , 

          3 ≤ 𝑖 ≤ 𝑛 − 1 
                                                                                            (28c) 
 
𝜑𝑛 =  −𝑢𝑛 +  𝑝2                                                                (28d)                                                     
                                                                                            
 

where 𝜱𝑇 =  [𝜑1,⋯ ,𝜑𝑛]𝑇  and 𝜑𝑖 = 0 for 𝑖 = 1,2, … ,𝑛 
where we have used a simple trapezoidal integration 
∫ 𝑦(𝑥)𝑑𝑥 =  𝛿

2
[𝑦(𝑎) + 𝑦(𝑏)]𝑏

𝑎  in the special case 𝑖 = 2. In the 
above system of equations the conductance terms 𝐹𝑖 are 
explicitly expressed in terms of the unknown function 𝑢(𝑥) by 
(25). 

In the above system of equations we observe the special 
cases for 𝑥 = 0 that 𝑢1 =  𝑝1 and for 𝑥 = 𝐿 that 𝑢𝑛 =  𝑝2 and 
as a result we only need to solve for the interior unknown 
pressures corresponding to indexes 𝑖 = 2,3, … ,𝑛 − 1. As a 
result the system (28) will be for the solution  of (𝑛 − 2) 
unknown pressures expressed in the standard form 
 

𝜱(𝒙) =  𝟎                                                                            (29) 
 

where 𝚽(𝒙) is a vector function which corresponds to the 
nonlinear equations in (28) and where 𝟎 is zero vector.  

Traditionally systems of nonlinear equations are solved by 
the application of Newton’s method of form 𝒙(𝑘) =  𝒙(𝑘−1) −
 𝐉−1�𝒙(𝑘−1)� ∙ 𝜱�𝒙(𝑘−1)� where 𝐉 is the Jacobian matrix for the 
associated system however the main disadvantage of 
Newton’s method apart from the high computational costs and 
explicit need for calculating the Jacobian matrix is that the 
starting solution 𝒙(0) = �𝑥1

(0), … , 𝑥𝑛−1
(0) � must be reasonably 

close in order to guarantee convergence.  
In the present context of a single defining mathematical 

model that can fully capture the flow physics it is seen that the 
behavior of the Sutton integral equation reported in [9] 
actually has the gas flow deviating far from the viscous flow 
regime over a large portion of the concentric annular channel 
with the majority of the flow occurring in the molecular flow 
regime. As a result from this observation the starting solution 
pressure profile from the continuum assumption in (7) may 
introduce errors and a possible lack of convergence.  

This potential problem is made more acute due to random 
fluctuations introduced in the interface gap ℎ(𝑥) in Monte 
Carlo based uncertainty quantification simulations that are 
used to determine the associated uncertainty in the solved 
pressure profile in the context of pressure metrology [14] from 
the underlying integral equations.  

Based on these considerations a less computationally 
intensive alternative to the traditional Newton method and 
optimization based modifications [15], and which importantly 
are more robust and more likely to guarantee convergence in 
the context of purely numerical based uncertainty 
quantification Monte Carlo simulations, are necessary.  

Of various possibilities [16] that compare recent methods a 
recent article in [17] that utilized the homotopy analysis 
method for a system of nonlinear algebraic equations yielded 
second and third order iterative method more efficient that the 
normal Newton method and more importantly is well adapted 
for systems developed by the discretization of nonlinear 
integral equations. This solution approach thus potentially 
addresses both of the requirements in terms of solving a 
nonlinear integral equation and in strengthening the 
convergence likelihood for future uncertainty quantification 
simulations of the mixed flow integral equation model.     

Additional details on the homotopy analysis method (HAM) 
is discussed in detail in [18] but the method in the context for 
nonlinear systems of equations 𝜱(𝒙) = 𝟎 may be summarized 
as per [19] as 
 
𝟎 = 𝜱�𝒙(𝑘)� +  𝜱′(𝒙(𝑘))�𝒚(𝑘) −  𝒙(𝑘)�                                          
𝟎 =
𝜱�𝒙(𝑘)� + 𝜱′�𝒙(𝑘)��𝒙(𝑘+1) −  𝒙(𝑘)� −  ℏ

2
𝜱′′�𝒙(𝑘)��𝒚(𝑘) −

𝒙(𝑘)�
2
     

𝑘 = 0, 1, 2, …                                                                      (30) 
                                                                                             

where ℏ is the so-called homotopy parameter. As discussed 
in [17] the HAM method gives rise to Chebyshev’s method for 
ℏ =  −1 and in the case for ℏ = 0 gives rise to Newton’s 
method. The homotopy parameter ℏ is calculated using the ℏ-
curves approach which consist of plotting the curves of 
possible values of ℏ against the solutions of 𝑥 and observing 
the convergence as 𝑘 the order of the iteration, is increased 
where a flat horizontal line in the (ℏ, 𝑥) curve will indicate the 
range of permissible values in the homotopy parameter.     
 In order to demonstrate the approach for the direct problem 
(29) we will consider the dimensional data in Table 1 below 
where the inlet and outlet pressures are set as 𝑝1 = 100 kPa 
and 𝑝2 = 1 kPa respectively.  
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Fig. 2. Illustration of mathematical system for integral equation 
discretization with 𝑛 = 5 corresponding to 5 equations with 3 

unknown interior nodes and 2 boundary nodes 
         

TABLE I 
REPRESENTATIVE INTERFACIAL GAP DIMENSIONAL DATA IN A PRESSURE 

BALANCE  

𝑖a 𝑥𝑖 (mm) ℎ𝑖 (𝜇m) 

1 0.0 0.75000 
2 7.5 0.75151 

3 15.0 0.60000 
4 22.5 0.65408 
5 30 0.68000 

   
aThe index i corresponding to the 𝑥 vs. ℎ(𝑥) dimensional data along the 

engagement length where 𝒙 =  [𝑥1, … ,𝑥𝑛] where 𝒙 ∈  [0,𝐿] and ℎ =
 [ℎ1, … , ℎ𝑛] 

 
We utilize the original dimensional data plotted in Fig. 1 but 
due to space limitations and in order to make the analysis 
approach clear we will restrict the derivation of the system of 
equations for 5 nodes so that 3 unknown interior nodes will be 
solved for. 

In our approach we will use the direct underlying data and 
not any curve fits to the expressions so the mechanism is more 
explicit. For the data in Table 1 there are three unknowns viz. 
𝑢2, 𝑢3 and 𝑢4 corresponding to spatial coordinates 𝑥2, 𝑥3 and 
𝑥4 since the pressures at the boundary points 𝑥1 and 𝑥2 are 
known as 𝑢1 =  𝑝1 and 𝑢5 =  𝑝2 from equation (28a) i.e. 
0 =  𝜑1 =  −𝑢1 + 𝑝1 and equation (28d) i.e. 0 =  𝜑5 =
 −𝑢5 +  𝑝2 respectively. 

Expanding out in symbolic form we have three nonlinear 
equations in the unknowns 𝑢2, 𝑢3 and 𝑢4, which read 
approximately as illustrated in Fig. 3 truncated to three 
decimal places. From the form of the system of equations it is 
clear that a derivative based solution techniques whilst 
possible is computationally expensive.  

Initial calculations tabulated in table 2 indicate that the 
viscous continuum pressure profile calculated with (7) that 
uses the Navier-Stokes equations does not provide a solution 
for the nonlinear Volterra integral equation (1) which is able 
to incorporate a mixed viscous/molecular gas flow along the 
length of the annular channel. 

 

 
Fig. 3. Illustration  of the system of nonlinear  equations obtained 
from the mixed flow nonlinear integral equation using five nodes 
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TABLE II 
NAVIER-STOKES CONTINUUM PRESSURE PROFILE AND ILLUSTRATION OF 

ERRORS  

𝑖a 𝑥𝑖 (mm) 𝑝𝑖 (kPa) 
 

𝜑𝑖 (kPa) 
1 0.0 100.00000 0.00000 
2 7.5 90.70793 -5.73197 
3 15.0 74.89197 -12.50938 
4 22.5 50.33107 -17.07284 
5 30 1.00000 0.00000 

aThe Navier-Stokes continuum pressure profile is 𝑝𝑖 and 𝜑𝑖 represents the 
respective nonlinear equation at node i 
  

In order to solve the mixed flow nonlinear Volterra 
mathematical model we must solve the associated system of 
simultaneous nonlinear equations in (29) which in our 
illustrative example is a system of five equations 𝜑𝑖 = 0. This 
problem may be converted to an equivalent optimization 
problem by defining a test function 
 

𝑓 =  ∑ 𝜑𝑖2𝑛
𝑖=1                                                                         (31) 

 

and then applying standard minimization routines with an 
approximate solution. For the illustrative example discussed 
the final numerical solution using a Fletcher-Reeves conjugate 
gradient algorithm as discussed in [21] is plotted in Fig. 4 
below.   
 

 
Fig. 4 Summary of the difference in pressure profiles using the 
viscous continuum Navier-Stokes and non-continuum mixed 

viscous/molecular flow integral equation 

IV. DISCUSSION 
In this paper we have presented the mathematical models 

for both viscous continuum i.e. Navier-Stokes based equations 
as well as mixed viscous/molecular i.e. continuum/non-
continuum gas pressure flows in a concentric annular interface 
gap channel, and numerically solved both models for a 
practical industrial example. The results of the solutions 
indicate that one should view standard commercial CFD 
solutions with caution unless the underlying model has been 
adequately validated and verified for industrial flow 
simulations. Numerical strategies to solve the underlying 
nonlinear integral equation model have been investigated and 

a Nystrom quadrature approach with a homotopy analysis 
method modification has been identified as the most 
appropriate methodology for future mixed viscous / molecular  
continuum / non-continuum flow simulation studies as it 
presents the means for solving strongly nonlinear problems 
with the possibility for studying the convergence of the 
solutions. 
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