

Abstract—The paper discusses the feasibility of

constructing a SQL Server FILESTREAM based English

Language Learning System (ELLS). It focuses on the results

and evaluation phase of the system. It explains the prospect of

storing and managing unstructured data (e.g. Images, video,

Word, Excel, PDF, MP3, …etc) for educational purposes via

utilizing FILESTREAM technique provided by SQL Server

2012, and explains how to maintain efficient storage and

access to BLOB data. The paper seeks to utilize the

combination of SQL Server 2012 features and the NTFS (New

Technology File System) to improve the efficiency and

performance of the ELLS system. The system also seeks to

maintain the transactional consistency between the

unstructured data and corresponding structured data. Three

different BLOB storage techniques: SQL Server

Varbinary(max), FILESTREAM through T_SQL, and

FILESTREAM through NTFS were compared for

performance purposes of the unstructured operations: insert,

update, and delete. Different storage sizes have been used in

the comparison ranging from 1MB to 6GB. According to the

performance of the various sizes of BLOB data,

FILESTREAM through T_SQL feature is best performed in

managing and storing unstructured data, it is more efficient to

use a Filestream when the typical file size is 1 MB or larger.

The system also supports some maintenance operations such as

backup, restore, and consistency checking.

Keywords— Filestream, BLOB, NTFS, Varbinary, T_SQL.

I. INTRODUCTION

N recent years, there has been an explosion in the volume of

digital data created and stored by both individuals and

organizations [1]. Historically, businesses have used computer

systems and databases to store most of their business data in

structured formats such as relational tables or fixed format

files, and software applications have used these structured data

stores to perform business tasks. Today however, a large

proportion of an organization’s data is typically stored in

documents created with productivity tools such as Microsoft

Office Excel and Microsoft Office Word, and advances in

digital photography, document scanning, video production,

1University of Tripoli, Tripoli, Libya, mmhereeg@msn.com
2Faculty of Engineering Technology, Tripoli, Libya,

a.g.altawil@gmail.com
3The Libyan Academy, Tripoli, Libya, khbelgath@hotmail.com.

and audio formats have further extended the range of

unstructured data formats that are used for business data [1].

For example, in the context of relational database systems, it

refers to data that can’t be stored in rows and columns.

Additionally, dramatic reductions in the cost of hardware

storage and memory have significantly affected the amount

and type of data that is stored in computer systems, and led to

the emergence of a new generation of business application that

merges traditional relational data structures with unstructured

digital content [2]. This profusion of digital content means that

organizations are now seeking to manage both relational data

and unstructured data at the enterprise scale, and require a

solution that comprehensively meets the needs of relational

and non-relational data storage while reducing the cost of

managing and building applications for that data [1]. Storing

unstructured data such as text documents, images, and videos

posed many challenges, such as how to maintain transactional

consistency between the structured and unstructured data, how

to manage backup and restore, and storage performance and

scalability. Architects of applications that required the storage

of binary large objects (BLOB) data could either store the data

in the database or store it outside of the database with a

reference stored in the database [3][4]. This paper focuses on

the results and evaluation phase of a SQL Server

FILESTREAM based English Language Learning System

(ELLS). The system is evaluated taking into consideration the

above mentioned issues including experiments, performance

measurement, and capabilities.

Thus these issues are solved throughout the development

phases of the project. The ELLS utilizes the FILESTREAM

feature provided by SQL Server 2008/2012, which allows the

storage and efficient access to BLOB data using a combination

of SQL Server and the NTFS (New Technology File System).

The ELLS has been evaluated in which these features have

been applied. Three different methods have been used and

compared in order to measure the performance changes over

time; one uses a relational database to manage large objects,

while the second method manages the objects as files in the

file system, or as a combination of both. The outcome of the

comparison will be presented throughout the paper

The system ultimately is intended to offer an excellent

supporting material for in-class teaching, developing some

language skills like reading, listening and speaking at certain

levels. The system will also allow undertaking tests and

providing automatic marking and feedback to students. This

The Results and Evaluation of the Filestream

Based English Language Learning System

Mohamed Mhereeg
1
, Asma Tawil

2
 and Khairia Belghet

3

I

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 2, Issue 2 (2015) ISSN 2349-1469 EISSN 2349-1477

http://dx.doi.org/10.15242/IJCCIE.ER915206 173

paper is based on the previous work entitled “Analysis and

Design of a Filestream based English Language Learning

System” and “The Implementation of a Filestream based

English Language Learning System”.

II. SYSTEM RESULTS

After the completion of the design [5] and the

implementation [6] phases of the ELLS System through the

utilization of Filestream feature in SQL Server 2012 to store

and manage unstructured. The following sections discusses the

results that have been accomplished.

A. Designing the Database with a FILESTREAM Feature

Enabled

A special-purpose database has been created for an

application called Learn_English. When using Filestream

storage the folder where the binary data is placed must be

specified. This folder is represented to SQL Server as a special

file group defined to contain the Filestream. The primary file

and the log files are defined automatically. All the files have

been created within the "D:\Data" folder, when the database

was created. All the FILESTREAM related data are stored in

FileStreamData folder which is also known as the

Learn_EnglishData Container.

B. Creating a Table with FILESTREAM Columns

Enhancing the storage and the performance of the

unstructured content in the database was achieved by

leveraging the NTFS file system via creating a table with

FILESTREAM columns added to store educational lessons

(video, image and audio). There is no need to make

compromises in efficiency and complexity as it was used to be

in the previous BLOB Storage Options when making the

choice between storing BLOB data inside or outside the

database. Instead, integrating BLOB data management with

the rest of the data in the relational database without the need

to manage the file system data separately. Defining the data as

a FILESTREAM column in SQL Server also ensures data-

level consistency between the relational data in the database

and the unstructured data that is physically stored on the file

system. A FILESTREAM column is a VARBINARY (MAX)

column that has the FILESTREAM attribute enabled.

C. Insertion of Data

This system contributes in the unstructured data storage

(Video, Audio and Image) of different sizes, ranging from

under 1MB up to 6 GB, by using the FileStream feature to

insert larger sizes.

Different files size have been inserted, which include

structured and unstructured data. They files consist of tutorials

exceeded 4 GB in volume, so as to make sure that the

FileStream feature has the ability to deal with large-sizes

exceeds the limit of T_SQL memory.

One could clearly see the overhead caused by executing

several different statements, and sizes using Sql FileStream.

The file handling overhead was seen in both file stream based

solutions compared to a Varbinary solution.e.

Three different storage techniques are utilized and

compared; one uses a relational database to store large objects,

while the second stores the objects as files in the file system,

or as a combination of both. The performance changes have

been measured over time. Table 1 shows the collected readings

and how this comparison was conducted.

Note: The measurement of storage has been made by

milliseconds (ms).
TABLE I

 COMPARISON BETWEEN THE MECHANISMS FOR DATA INSERTION

D. Updating of Data

Modification of FILESTREAM data can be done via using

streaming API, which is pretty much the same as what we saw

in the Insert function. Prior accessing the data the user needs to

access the PathName(), starts a transaction and then obtains a

transaction context before modifying the data using the

SqlFileStream class.

Three different storage techniques are utilized and

compared; one uses a relational database to update large

objects, while the second updates the objects as files in the file

system, or as a combination of both. The performance changes

have been measured over time. Table 2 shows the collected

readings and how this comparison was conducted.

TABLE II

COMPARISON BETWEEN THE DATA UPDATING MECHANISMS

E. Deletion of Data

When the entire row containing the FILESTREAM data is

deleted from the table, a regular DELETE command will

delete the row from the table and remove all the

FILESTREAM data associated with it from the

FILESTREAM data container using the CHECKPOINT

command.

Three different storage techniques are utilized and

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 2, Issue 2 (2015) ISSN 2349-1469 EISSN 2349-1477

http://dx.doi.org/10.15242/IJCCIE.ER915206 174

compared; one uses a relational database to delete large

objects, while the second stores the objects as files in the file

system, or as a combination of both. The performance changes

have been measured over time. Table 3 shows the collected

readings and how this comparison was conducted:
TABLE III

COMPARISON BETWEEN THE MECHANISMS FOR DATA DELETION

F. Access and Retrieval of FILESTREAM Data

After storing data in a FILESTREAM column, the files can

be accessed using T_SQL transactions or using Win32

application programming interfaces (APIs). T_SQL can access

the data as if they were stored in the database.

a) Accessing FILESTTREAM Data Using TSQL

Even though the actual data of the FILESTREAM enables

column stored in the NT File System, it would be completely

transparent to the T_SQL code. Data can be accessed in the

FILESTREAM column just like any other column of the table.

The user can observe the page loading the details of the items

in the database and displaying the thumbnail images associated

with those items

b) Accessing FILESTREAM Data with Managed API

There are two key pieces of information that need to be

obtained in order to access the FILESTREAM data using

Win32 Streaming. First, the file system transaction context is

needed, which is returned by the

GET_FILESTREAM_TRANSACTION_CONTEXT function,

this function returns NULL if a transaction has not yet been

established. Second, the logical UNC path to the file holding

the BLOB on the server is also needed, which is returned by

the PathName method on a varbinary(max) FILESTREAM

value instance.

G. Backup and Restore for FILESTREAM Database

The benefit of the FILESTREAM feature over the

traditional methods of storing the BLOB data in the file system

is that a FILESTREAM database backup contains both the

relational data and the BLOB data stored in the

FILESTREAM data container. This removes the

administrative overhead of having to maintain separate

backups of the disk files, which is necessary when using the

traditional BLOB storage methods. Likewise, when the full

backup of a FILESTREAM database is restored to another

location, the FILESTREAM data is also restored, and is

available along with the relational data

H. Enhancing the Security of the System

Protection and management of users’ access permissions in

terms of storage methods have been configured as the

following:

1. When LOB data is stored within the database, the security

can be managed at the SQL Server level. This reduces the

administrative complexity and aligns LOB security with

the same security processes applied to the associated

relational data.

2. If LOB data is stored outside the database, separate

measures must be put in place to secure the file system.

The relational data and LOB data are disconnected, and

managing user access permissions is a major challenge.

III. SYSTEM EVALUATION

This section discusses the evaluation of the system to ensure

that the system is designed and developed to meet the

specified requirements of the system. The main reason for the

evaluation is to verify how well the system fulfills the intended

objectives to maintain the unstructured data via utilizing the

Filestream technique. This evaluation was done by the system

developer only and no evaluation was done by the users. The

following criteria used in the system evaluation was done by

the developer.

a) Functionality

The functionality feature of the criteria evaluates how well

the developed system meets the predefined functional

requirements [5]. Each functional requirement was evaluated

and checked against the capability of the developed system to

ensure that the functions operate in an efficient manner. The

entire system was also evaluated to test the functionality,

efficiency, and the correctness of the outputs. For example,

links and buttons were tested to ensure that the users are

redirected to the correct pages and that the data are being

inserted in the correct tables.

b) The performance of the Criteria

This criterion determines how the system performs in terms

of responsiveness and accuracy of data. Measurement of the

data accuracy was done in all forms, where the fields were

validated whether the correct data types are inserted, and also

checking whether the error messages for wrong inputs are fired

whenever an error occurs.

A. Evaluation of the Interface

The performance of standards for GUIs have been

evaluated. The system is carefully designed to be user friendly.

Its design is very intuitive and informative so that even people

with little experience in computers can easily use this system.

A user friendly feature of this system is ‘title based’

information for each item in each page. Moving the mouse

pointer over any item such as buttons, text boxes, images, etc

will display the title information below the mouse pointer

indicating its functionality or intent. This greatly simplifies

interaction between the system and the users.

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 2, Issue 2 (2015) ISSN 2349-1469 EISSN 2349-1477

http://dx.doi.org/10.15242/IJCCIE.ER915206 175

The following features can also be obtained:

Allows user to complete tasks effectively.

The system should prevent the user from making errors and

allow error recovery.

Informative error messages when things go wrong.

All menu functions were tested, by invoking the

corresponding functionality properly.

 Providing a meaningful naming system for all output data

All menu functions and sub functions were verified for

correctness.

All required fields were not left blank. For example when

leaving a username or password text fields blank, the error

messages will appear.

B. Performance Evaluation

With a small amount of binary data, it is not efficient to use

a file stream. This is because it needs extra overhead like file

creation and handling. These operations are not needed when

predefined database files are used. However, with larger files,

file streams are quite efficient. The following charts show the

elapsed times for managing data in milliseconds using

different techniques. The key specifications for the computer

used were:

SQL Server and client application on the same machine

Processor: Intel Core7 Duo, 1.8 MHz

8 GB physical memory

Database files on drive C

Files uploaded from drive D

Drives C: and D: on separate physical SATA disk drives

As the below figures illustrate, compared with the time

consumption in data entry for different storage methods, the

relative performance for read, update and delete operations are

presented:

BLOB data are stored in FILESTREAM format and

accessed through the WIN32 streaming APIs. The times

includes getting a transaction context from SQL Server,

getting the file path, doing the operation, closing the file, and

committing the transaction in SQL Server.

BLOB data are stored in FILESTREAM format and

manipulated through T-SQL.

1. BLOB data are stored in Varbinary(max)

format (and obviously manipulated through

T_SQL).

C. Performance of Data Insertion

Figure 1 shows the performance of the insertion of

unstructured data in accordance with the table 1.

In this measurements, it can clearly be seen the overhead

caused by executing several different statements using the Sql

FileStream. In addition, the file handling overhead is seen in

both file stream based solutions compared to a varbinary

inside the database. Testing the speed of insertion is applied on

70.55Mb, 95.1Kb, 1.39Mb, 1.67MB, 2.19MB, 13.4Mb,

27MB, 169MB, 227Mb, 233MB, 453MB, 800MB, and 1GB

of data from the table. This figure below shows the difference

in the performance results.

Fig. 1: Performance of the data insertion.

Fig. 2: Data Insertion (Equal row size of 453 MB)

According to figure 1, FILESTREAM through T_SQL has

shown best performance. FILESTREAM through NTFS is a

bit slower, but when inserting data larger than 1MB in volume,

Varbinary(max) needed more time to perform the storing

operation.

 Figure 2 above shows the relative throughput of inserting

same size of BLOB data using Varbinary(max),

FILESTREAM through T_SQL, and FILESTREAM through

NTFS. This graph shows 453KB file repeated 3 times for each

measurement. According to this figure FILESTREAM through

T_SQL has shown the best performance. However,

FILESTREAM through NTFS and Varbinary(max) are

noticeably slower

Based on these measurements, it's more efficient to use a file

stream when the file size is about 1MB or larger. If files are

small (clearly under 1MB), a traditional varbinary performs

better.

D. Performance of Data Updating

Figure 3 shows the relative throughput of update of various

sizes of BLOB data (70kb, 573kb, 1.39Mb, 1.77Mb,

56Mb,180Mb, 188Mb, 196Mb, 227Mb, 250Mb,

321Mb,358Mb and 500Mb) using Varbinary(max),

FILESTREAM through T_SQL, and FILESTREAM through

NTFS. This figure shows the performance results of the update

operations of unstructured data in accordance with the table 2.

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 2, Issue 2 (2015) ISSN 2349-1469 EISSN 2349-1477

http://dx.doi.org/10.15242/IJCCIE.ER915206 176

Fig. 3: Performance of the data updating

Fig. 4: Data Updating (Equal row size of 196 MB)

According to the Figure 3, FILESTREAM through T_SQL

has shown best performance. FILESTREAM through NTFS is

a bit slower. But when updating data larger than or equals

1MB in volume, Varbinary(max) needed more time to perform

the update operations.

Figure 4 above shows the relative throughput of update of

same size of BLOB data using Varbinary(max),

FILESTREAM through T_SQL, and FILESTREAM through

NTFS. This figure shows 196MB file repeated 3 times for

each measurement. According to this figure, FILESTREAM

through T_SQL has shown best performance. However,

FILESTREAM through NTFS is a bit slower, but when

updating data larger than or equals 1MB in volume, Varbinary

(max) needed more time to perform the updating operations.

Based on these measurements, it's more efficient to use a

T_SQL file stream technique for data updating.

E. Performance of Data Deletion

Figure 5 shows the relative throughput of deletion of various

sizes of BLOB data (70.5Kb, 95Kb, 573Kb, 1.39Mb, 1.77Mb,

13.4Mb, 27Mb, 56Mb, 180MB, 196Mb, 233MB, 358MB, and

500MB) using Varbinary(max), FILESTREAM through

T_SQL, and FILESTREAM through NTFS. Figure 5 shows

the performance results of the deletion of unstructured data in

accordance with the table 3.

Fig. 5: Performance of the data deletion

Fig. 6: Data Deletion (Equal row size of 196 MB)

According to the Figure 5, FILESTREAM through T_SQL

has shown best performance. However, FILESTREAM

through NTFS is a bit slower. But when deleting data larger

than 1MB in volume, Varbinary(max) needed more time to

perform the data deletion operations.

Graph 6 shows the relative throughput of Deletion of same

size of BLOB data using Varbinary(max), FILESTREAM

through Transact-SQL, and FILESTREAM through NTFS.

This figure shows a file size of 196MB being repeated 3 times

for each measurement. Based on these measurements, it is

more efficient and faster to use a T_SQL Filestream to delete

files. However, using Sql FileStream would not give any

performance advantage, but when all the data is deleted using

a different storage techniques, FILESTREAM through NTFS

is much faster than FILESTREAM through T_SQL and

Varbinary(max). Table 4 below shows the size of the data in

each table.
TABLE VI

COMPARISON BETWEEN THE MECHANISMS OF ALL DATA DELETION FROM

THE TABLE

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 2, Issue 2 (2015) ISSN 2349-1469 EISSN 2349-1477

http://dx.doi.org/10.15242/IJCCIE.ER915206 177

Fig. 7: Performance of the deletion of all data

IV. CONCLUSION

The Filestream through T_SQL was utilized and proved

successful in retrieving and storing unstructured data in the

NTFS file system. This is accomplished by storing the

structured data in the database files and the unstructured

BLOB data in the file system, while maintaining transactional

consistency between the two stores. The comparison between

the different BLOB storage techniques was conducted for

performance purposes of the unstructured operations: insert,

update, and delete. According to the performance of various

sizes of BLOB data ranging from below 1MB up to 6 GB

using Varbinary(max), FILESTREAM through T_SQL, and

FILESTREAM through NTFS, It was clearly noticed that

T_SQL access of FILESTREAM data is several times faster

than T_SQL access of Varbinary(max) data as data size

increases. Furthermore, Based on these comparisons,

FILESTREAM Feature through T_SQL is best performed in

managing and storing unstructured data, it is more efficient to

use this technique when the typical file size is about 1 MB or

larger. If files are small (clearly under 1 MB), a traditional

varbinary performs better. Based on the outcome obtained

from comparing these BLOB Storage techniques, The

FILESTREAM feature is the only solution that provides

transactional consistency of structured and unstructured data as

well as security, and excellent streaming performance.

REFERENCES

[1] Microsoft (July 2008). Managing Unstructured Data with SQL Server

2008. Microsoft SQL Server 2008. [Online]. pp 1-2.

Available: http://download.microsoft.com/download/a/c/d/acd8e043-

d69b-4f09-bc9e-4168b65aaa71/ SQL2008UnstructuredData.doc

[2] J. Azemović. (2012). Varbinary vs. Filestream and other BLOB issues.

BEGIN TRANSACTION. [online] Available:

http://sqltales.wordpress.com/2012/05/15/varbinary-vs-filestream-and-

other-blob-issues .

[3] S. Tinline-Jones. (2011). FILESTREAM Design and Implementation

Considerations. SQL Server Technical Article. [online]. pp 5-6.

Available:http://download.microsoft.com/download/d/9/4/d948f981-

926e-40fa-a026 5bfcf076d9b9/

FILESTREAM%20Design%20and%20Implementation%20Considerati

ons.docx

[4] J. Sebastian and S. Aelterman, The Art of SQL Filestream , Simple Talk

Publishing, 2012,ch1,pp.23-45.

[5] M. R. Mhereeg, A. G. Tawil, “The Analysis and Design of a Filestream

Based English Language Learning System,” in Proc. 2015 ICCIT15

Conf., 2015.

[6] A. G. Tawil, M. R. Mhereeg, “The Implementation of a Filestream

Based English Language Learning System,” in Proc. 2015 ITMC15

Conf., 2015, pp. 39-47.

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 2, Issue 2 (2015) ISSN 2349-1469 EISSN 2349-1477

http://dx.doi.org/10.15242/IJCCIE.ER915206 178

