

Abstract— In this paper we address the issues related to

scalability of Named Entity Recognition using Multi Class Support
Vector Machines Solution using high-dimensional input space, by
looking at the training computational time factor. This paper presents
mathematical foundation of multi-class support vector machines and
the evolution of the problem formulation aiming to reduce the
training time by improving the optimization algorithms. We then
have a look at a new cutting plane algorithm that accelerates the
training process while achieving good out-of-the-box performance in
linear time. The cutting plane algorithm is first implemented as a
standalone java executable in order to study its effectiveness in
reducing the computational time.

Keywords— Computational Time, Multi-Class Classification,
Support Vector Machines, Training.

I. INTRODUCTION
UPPORT Vector Machine (SVM) is a new and very
promising classification technique developed by Vapnik
and his group at AT&T Bell Laboratories [1, 7, 8, 9].

Standard SVM training has O(m3) time and O(m2) space
complexities, where m is the training set size. It is thus
computationally infeasible on very large data sets. Binary
(two-class) classification using support vector machines
(SVMs) is a very well developed technique [1] [2]. Due to
various complexities, a direct solution of multiclass problems
using a single SVM formulation is usually avoided. The better
approach is to use a combination of several binary SVM
classifiers to solve a given multiclass problem. Popular
methods for doing this are: one-versus-all method using
winner-takes-all strategy (WTA SVM); one-versus-one
method implemented by Max-Wins Voting (MWV SVM);
DAGSVM [5]; and error-correcting codes [2]. Hastie and
Tibshirani [3] proposed a good general strategy called
pairwise coupling for combining posterior probabilities
provided by individual binary classifiers in order to do
multiclass classification. Since SVMs do not naturally give out
posterior probabilities, they suggested a particular way of
generating these probabilities from the binary SVM outputs
and then used these probabilities together with pairwise

Jyothi Bellary is with Aditya College of Engineering, Madanapalle
(corresponding author’s phone: +919985295046 ; e-mail:
jyothibellary@gmil.com).

Dr. E Keshava Reddy, is with Jawaharlal Nehru Technological University
Anantapur, Ananthapuramu, Andhra Pradesh , India.
(e-mail:keshava_e@rediffmail.com).

coupling to do multi-class classification. Hastie and

Tibshirani did a quick empirical evaluation of this method
against MWV SVM and found that the two methods give
comparable generalization performances. Platt [6] criticized
Hastie and Tibshirani’s method of generating posterior class
probabilities for a binary SVM, and suggested the use of a
properly designed sigmoid applied to the SVM output to form
these probabilities.

II. ALGORITHMS FOR TRAINING SVM

A. Basic All-Together Multi-Class SVM
The Basic All-Together Multi-Class SVM idea is similar to

One-Against-All approach. It constructs k two-class rules
where the jth function separates training
vectors of the class j from other vectors. There are k decision
functions but all are obtained by solving one problem. Similar
to the non-separable binary SVM case, the objective of the
machine is to maximize the margin separating the different
classes while minimizing the classification error of each data
point as represented by the slack variable. For a k-class
problem with n training points, the multi-class support vector
machine can be formulated as the minimization of

 Q(w, b, ξ) =

(1)
 Subject to

(2)
Where is the input vector for data point i, is the

correct class for data point i, is the slack variable
associated with data point i relative to class j (i.e. the error
measure for misclassifying i as belonging to class j), and C is
the regularization parameter determining the trade-off between
the maximization of the margin and the minimization of the
classification error.

Figure 1 is an illustration of different slack variables relative
to individual classes, which is the basic way of formulating the
Multi-class SVM Problem.

Improving Multi-Class Support Vector
Machines Training

Jyothi Bellary, and Dr. Keshava Reddy Eddula

S

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 1, Issue 1 (2014) ISSN 2349-1469 EISSN 2349-1477

http://dx.doi.org/10.15242/ IJCCIE.E1113531 119

 Fig. 1-Multi-Class SVM Error Representation

In the basic multi-class SVM formulation, the machine
needs to minimize k x n slack variables, in addition to
maximizing k margins. The multi-class classification decision
function is defined by ,
i.e., a data point x is classified as the class j whose weights
maximize the classification score for the point x. The
constrained problem in (1) and (2) can be transformed into its
unconstrained equivalent formulation by introducing the non-
negative Lagrange multipliers :

 (3)

Where

 otherwise (4)

and the conditions for optimality are :

 (5)

 (6)
in addition to being minimized in w,b,ξ

(derivatives equal to zero).

The dual formulation is obtained by reducing (3) to (6) using
the kernel function . The dual
formulation is to maximize:

 (7)
subject to:

 (8)
 (9)

Finally, the decision function for class j is given by:

 (10)
and the classification task for data point x is to find class j to

satisfy .

By examining the dual formulation of the basic multi-class
SVM learning problem as defined in (7) to (9), we observe the
following:
• Number of variables in the optimization problem is equal

to the number of training points n times the number of
classes k, i.e., n x k variables.

• Number of constraints to be satisfied zij is equal to number
of training points n.

• The upper limit for the weight variables is the
regularization parameter C.
With n x k variables, the quadratic optimization problem

would require O(n3k3) computational time to solve – assuming
the quadratic optimizer used runs in third power order of the
size of its input expressed in number of variables. This is the
main issue with the multi-class SVM training. One can easily
see that the training time would become prohibitive when a
large number of training data points and classes is used for the
learning task.

B. Improving SVM Training Time
From the discussion of the basic multi-class formulation, we

see that any improvement in training time would require
tackling one of the sources of delay by either: reducing the
number of data points, reducing the data points’
dimensionality, and/or lowering the number of variables and
constraints for the optimization problem. Each of these
possibilities has been the subject of research activities aiming
to improve SVM training. In this paper, we will focus on the
approach which is to accelerate training by lowering the
number of variables and/or constraints for the optimization
task. Crammer and Singer (2001) reduce the number of
optimization variables by reducing the number of slack
variables to = max() for j=1, .., k. In other words,
it reduces the size of the optimization problem by considering
only the highest slack for each data point across all classes,

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 1, Issue 1 (2014) ISSN 2349-1469 EISSN 2349-1477

http://dx.doi.org/10.15242/ IJCCIE.E1113531 120

thereby having one slack variable per data point. The primal
and dual formulations are derived in the same way as for the
basic SVM formulation. The mathematical proof is provided
in (Crammer and Singer 2001) and extended in (Abe2005) to
include bias terms. We will simply provide the initial
optimization problem and the final dual formulation in order to
contrast it with the basic formulation. Using the n slack
formulation, the optimization problem is:

 Q(w, b, ξ) = (11)

Subject to

 (12)

The dual formulation is to maximize

 Subject to (13)

0 for (14)

 (15)

and the decision function for class j is given by

 (16)

Comparing the basic formulation to that of (Crammer and
Singer 2001), we observe that the reduction of the number of
slack variables from n x k to n did not increase the number of
constraints and the final optimization problem is much simpler
that the basic SVM problem. However, using a large number
of data points n, the optimization time remains high as it
requires O(n3) to complete. The optimization algorithm in
(Crammer and Singer 2001) is implemented in SVM-
Multiclass (Tsochantaridis et al. 2004). In order to further
improve the training time, one may attempt to reduce the
number of data points considered by the optimization
algorithm. This may be achieved by approximating the total
accurate solution by one that attempts to reach a close
accuracy by using a smaller number of data points. Cutting
plane algorithms are developed to approximate convex
optimization problems by finding data points that approach the

optimal solution and discarding the other points.

C. SVM Structural 1-Slack Formulation
We performed a number of experiments using both single

class and multi-class cases in order to identify ways to improve
the multi-class training time which aimed to identify the
scalability issues with All-Together multi-class SVM. Using
SVM-Light (Joachims 1998a, 2002) for the single class
experiments and SVM-Multiclass (Crammer and Singer 2001;

Tsochantaridis et al. 2004) for multi-class problems, we
observe that the number of support vectors generated in both
cases is O(n0.8). In fact, SVM-Multiclass uses SVM Light’s
quadratic optimizer, where the input to the optimizer is a
realization of (Crammer and Singer 2001). The O(n0.8) is an
experimental observation using the same training dataset for
binary and multi-class training. In general, the worst case

estimate for the number of support vectors is O(n), where all
training points are potentially support vectors. . The training
time using SVM-Light and SVM-Multiclass is O(n2), where the
multi-class case is O(k2) slower than the single case case, k
being the number of classes. With the availability of the
improved binary SVM implementation in SVM-Perf (Joachims
2006) which reduces the training time to linear time, and
knowing that the multi-class solution can be built using the
single class one, we analyzed the improved binary
implementation in SVM-Perf in order to investigate ways to
extend the solution to support multi-class training. SVM-Perf
(Joachims 2006) is based on a newer SVM formulation than
that of (Crammer and Singer 2001) which attempts to reduce
the number of slack variables from n variables to just one. The
new formulation is referred to as 1-slack formulation.
The 1-slack structural formulation is (excluding the bias
terms):

 (17)

 (18)

Such that

In this formulation, one common slack variable ξ which
constitutes an upper bound on all training errors is used.
However, the number of constraints in this case is 2n, one
for each possible vector c= (c1 ,c2 ,...,cn)є{0,1}n. Each
constraint vector corresponds to the sum of a subset of
constraints from the n-slack formulation in (11) and (12). The
new constraint vectors constitute the input to the quadratic
optimizer.

SVM-Perf (Joachims 2006) uses a binary cutting plane
algorithm in order to reduce the number of constraints in the
problem while providing an approximate solution in a constant
number of iterations. Proof of equivalence of the 1-slack
formulation to the n-slack formulation and convergence of the
cutting plane algorithm are provided in (Joachims 2006).
SVM-Perf binary training algorithm is the following:

Algorithm 1 : Algorithm for training binary classification SVM

1: Input: S={(,),...,(, ,)},y {-1,1 },C
 2: C= (C is the set of constraints for input to the optimizer)
 3: repeat (W,

 4: such that

 5: for i=1……n do
 6.

 0 Otherwise
 7: end of for
 8:
 9: until

 10: return (W,

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 1, Issue 1 (2014) ISSN 2349-1469 EISSN 2349-1477

http://dx.doi.org/10.15242/ IJCCIE.E1113531 121

D. SVM – PerfMulti : New Multi-Class Instantiation
In the general case, the SVM structural 1-slack

formulation(Joachims 2005) is the following (unbiased
formulation(unbiased formulation):

 (19)
Such that
 (20)
where

is a set of possible k labels and is a function that
describes the match between and . The

objective is to maximize where

 (21)
Designing the structure of the function and a

suitable training loss function for a given problem
such that the argmax is computed efficiently is the main
objective for a particular instantiation of SVM-Struct V3.0 and
is left to the designer of the solution. The general algorithm to
solve a quadratic optimization problem using the multivariate
SVM 1-slack formulation (Joachims 2005) is the following:

Algorithm 2: Algorithm for solving multivariate

quadratic optimization problems

1:Input: ={(), ={()},y {-1,1 },C,

2:C= (C is the set of constraints for input to the

optimizer)

3: repeat (W,

4:such that

5: for i=1……n do

6:

 0 Otherwise

7: end of

8:

9: until

10: return (W,

Tsochantaridis et al. (2004) show that the algorithm
terminates after a polynomial number of iterations. The set of
constraints C is iteratively filled with the most violated
constraints found in the input training dataset. Algorithm 1 is
an instantiation of Algorithm 2 for the binary classification
case.

E. Accelerated Cutting Plane Algorithm

The 1-slack SVM structural formulation expedites the
optimization process by reducing the number of variables to be
optimized while shifting the decision on how to prepare the
quadratic optimizer’s input data to the solution designer. Using
an error rate loss function, SVM-Perf builds one constraint

vector for all data points and adds it to the input data vectors
for the optimization process. The individual constraint value is
zero if the point is correctly classified, or one otherwise.
Inspired by the improved training time of SVM-Perf as
compared to that of SVM-Light, we develop a cutting plane
algorithm for handling multiple classes at the same time using
a loss function based on error rate. In this section we describe
a new multi-class instantiation of SVM-Struct V3.0
(Tsochantaridis et al. 2005) – SVM-PerfMulti. Using the SVM
1-slack formulation, we introduce a cutting plane algorithm
that identifies the most violated constraints to be used for the
quadratic optimization. The cutting plane algorithm is inspired
by the geometrical intuition behind support vector machines
illustrated in Figure 1 and Figure 2.

Fig. 2 – SVM Non-Linearly Separable case

Considering the general non-linearly separable case, the
objective of the optimization problem is to:

• Maximize the margin(s) separating the hyperplanes
• Minimize the slack error for each data point.

In addition to the optimization objectives, the algorithm also
attempts to boost the classification performance of the
machine. The cutting plane algorithm iteratively increases the
gap between the positive and negative examples for each class,
which refines the input to the quadratic optimizer during
consecutive learning iterations and accentuates the impact of
the scarce positive examples.
Lines 6 to 8 of algorithm aim to satisfy line 4 of Algorithm 2
by finding the set of most violated constraints that
maximizes

The SVM-PerfMulti (Habib 2008) cutting plane algorithm
identifies the most violated constraints by maximizing the
difference between the classification score of a data point
relative to its own class and the best score among all other
classes. If the difference is greater than a loss measure
threshold, the data point is considered to be correctly classi_
fied and therefore its associated constraint is not violated.
Otherwise, the constraint is violated. In other words, the

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 1, Issue 1 (2014) ISSN 2349-1469 EISSN 2349-1477

http://dx.doi.org/10.15242/ IJCCIE.E1113531 122

greater the difference in classification score between the
correct classification and the next best, the more we consider
than the trained model is capable of correctly classifying
unknown data points. Since the cutting plane decision is based
on a slack error criterion, it falls in the category of a slack-
rescaling algorithm. However, we use the margin-rescaling
option during the optimization process, where individual
weights are scaled by a fixed margin factor that is independent
of the current loss value.

Algorithm 3: Algorithm for training multi-class

classification SVM

1: Input: S={(,),...,(, ,)},y {1..k },C, ,a
2:C= (C is the set of constraints for input to the

optimizer)

3: l=initil example loss value=100.0 / n

4: repeat

5:such that

 Where W={W1….Wk}
6: for i=1……n do

7:
 = 0 Otherwise
8: end for

9:

10:
11. until

12: return (W,

The initial loss measure threshold is equivalent to that of a

total loss, i.e., 100% loss distributed among all data points.
The loss threshold is increased after each iteration thereby
separating the correct vs. incorrect classifications by a larger
distance. We use a heuristic increment based on a fraction of
the highest correctly classified score.

To find those positions that maximize line 4 of Algorithm 2
–

, – a sufficient

condition is to maximize by classifying the input
vectors using the trained model after each optimization cycle.
If an input example is incorrectly classified, its associated
constraint would be considered violated. In this case, finding
the most violated constraints’ criteria would be:

 = 0 otherwise (22)

We will now show that all constraints found by the criteria

in the above eqution – all incorrectly classified points – are
also found by line 7 of Algorithm 3 where a constraint is
considered violated if:

i.e. (23)

If the correct classification score for data point i is less than
the maximum score for all incorrect
classes, , it will also be less

than the maximum score plus a loss threshold l,

.
This means that all

violated constraints that need to be found in order to satisfy
line 4 of Algorithm 2 are also found by line 7 of Algorithm 3,
even if no loss threshold comparison is performed (l=0).
However, adding the loss threshold comparison will cause a
subset of the correctly classified data points to be flagged as
incorrectly classified and added to the violated constraints.
The loss threshold term l is therefore making the correct
classification criteria more strict and requiring that the correct
example is as far as possible for all other classes. Moreover,
by incrementing l after each optimization cycle, the
classification is further refined and the separation between
classes is widened.

III. BOOSTING CLASSIFICATION PERFORMANCE
We hypothesize that the effect of the stricter correct

classification decision has the effect of boosting the
classification performance. Widening the gap between the
correct and incorrect classification for an example has the
effect of boosting the weight of the positive examples for the
correct class. As part of the investigative experiments , one of
the single class experiments using SVM-Light assessed the
effect of boosting the weights of positive examples by some
multiplier factor. Using a preset boosting factor led to
improved performance measures up to a certain level, up to a
certain point after which performance decreased with higher
boosting factors. In Algorithm 3, we do not apply a preset
boosting factor but rather use a fraction of the maximum
correctly classified score to increase the loss threshold
measure. This is a heuristic value indicating the highest sphere
of correct scores. One may use other heuristic measures, such
as the current value of the loss function , . However,
we observed that using the maximum correct score led to the
best and more consistent results with different experimental
datasets.

Algorithm 3 falls under the category of slack-rescaling
algorithms because the violation criteria is based on the
difference between the correctly classified score and the
incorrect ones. We use slack rescaling for finding the most
violated constraints yet use margin rescaling for the

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 1, Issue 1 (2014) ISSN 2349-1469 EISSN 2349-1477

http://dx.doi.org/10.15242/ IJCCIE.E1113531 123

optimization phase. According to the learning constraint in
(15), all learned weights are limited by the value of the
regularization parameter C which governs the trade-off
between the slack minimization and the margin maximization.
Using the performance boosting mechanism in Algorithm 3
leads to a faster stabilization of both optimization objectives
thereby causing the trained model to reach a good out-of-the-
box performance independent of the value of C when binary
features are used.

IV. REDUCING MEMORY REQUIREMENTS
Using the SVM structural formulation for either binary or

multi-class learning, the training time is improved by
combining feature vectors into vector(s) of most violated
constraints. The generated vectors require larger memory as
the size of each constraint vector is O(f) in the binary case and
O(kf) in the multi-class case, where f is the number of features
in the training set and k is the number of classes. E.g., for a
training set with 1,000,000 features and 10 classes – and
assuming 8-bytes per feature for the feature number and its
weight – a binary constraint vector may need up to 8MB of
memory while a multi-class vector may need up to 80MB.
These estimates constitute a worse-case scenario, where all
features are represented in each vector for all classes. In
practice, using the JNLPBA-04 training dataset with over a
million features and 11 classes, the multi-class constraint
vector size was about 0.5MB. Although the support vector size
in multi-class training could reach O(k) multiples of the
corresponding size in the binary case, experiments found that
the multi-class overall memory requirements using SVM-
PerfMulti do not approach this worst case possibility. Since
the memory needed depends on the number of constraints – or
in other words, the number of learning iterations – reducing
the number of iterations will lead to a lowered memory
consumption. Algorithm 3 accelerates the learning process
thereby reducing the total number of iterations (and support
vectors). In order to ensure that all memory allocations
performed during the learning process are necessary, we
performed extensive process time and memory profiling as
part of the empirical analysis. We identified one area of
improvement in SVM-Struct V3.0 where the trained model is
copied at the end of the learning iterations. With the high
amount of memory needed for a trained model using a large
high-dimensional dataset, experiments using larger data sizes
failed due to lack of memory and the overall program aborts
without saving the trained model although the actual learning
has been completed. Another area of improvement that we
identified is to alter the way that SVM-Light shrinks the
working set of constraint vectors by using a negative number
of iterations-to-shrink. This alteration has the effect of
lowering the number of support vectors based on inconsistency
independent of how long the support vector has been
deactivated. The final effect is a reduced number of support
vectors in the working set.

V. CONCLUSION

Having addressed ways to reduce the necessary online
memory needed for the learning process, additional reduction
may be achieved by using a different medium to store
examples and/or support vectors. In the future work, we
describe a database supported architecture to alleviate the
online memory needs as well as provide a user friendly
framework for SVM learning and classification.

REFERENCES
[1] Boser, B., Guyon, I., Vapnik, V.: An training algorithm for optimal

margin classifiers. In: Fifth Annual Workshop on Computational
Learning Theory, Pittsburgh, ACM (1992) 144–152.

[2] Dietterich, T., Bakiri, G.: Solving multiclass problem via error-
correcting output code. Journal of Artificial Intelligence Research, Vol.
2 (1995) 263–286.

[3] Hastie, T., Tibshirani, R.: Classification by pairwise coupling. In:
Jordan, M.I., Kearns, M.J., Solla, A.S. (eds.): Advances in Neural
Information Processing Systems 10. MIT Press (1998).

[4] Vapnik, V.: Statistical Learning Theory. Wiley Interscience (1998).
[5] Platt, J., Cristanini, N., Shawe-Taylor, J.: Large margin DAGs for

multiclass classification. Advances in Neural Information Processing
Systems 12. MIT Press (2000) 543–557.

[6] Platt, J.: Probabilistic outputs for support vector machines and
comparison to regularized likelihood methods. In: Smola, A.J., Bartlett,
P., Sch¨olkopf, B., Schuurmans, D. (eds.): Advances in Large Margin
Classifiers. MIT Press (1999) 61–74.

[7] C.J.C. Burges. Simpli_ed support vector decision rules, 1996.
[8] C. Cortes and V. Vapnik. Support vector networks. Machine Learning,

20:1{25, 1995.
[9] V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag,

1995.
http://dx.doi.org/10.1007/978-1-4757-2440-0

[10] S. Abe, Support Vector Machines for Pattern Classification, Springer-
Verlag, London, 2005.

[11] K. Crammer and Y. Singer, On the Algorithmic Implementation of
Multi-class SVMs, Journal of Machine Learning Research, 2 (2001), pp.
265–292.

[12] M. S. Habib and J. Kalita, Language and Domain-Independent Named
Entity Recognition: Experiment using SVM and High- Dimensional
Features, in J. Kalita and J. Mattoon, eds., Proc. of the 4th
Biotechnology and Bioinformatics Symposium (BIOT-2007), Colorado
Springs, CO, 2007, pp. 69-73.

[13] C.-W. Hsu and C.-C. Lin, A Comparison of Methods for Multi- Class
Support Vector Machines, IEEE Transactions on Neural Networks, 13
(2002), pp. 415-425.
http://dx.doi.org/10.1109/72.991427

[14] T. Joachims, Training Linear SVMs in Linear Time, Proc. of
the ACM Conference on Knowledge Discovery and DataMining
(KDD), 2006.

[15] T. Joachims, Learning to Classify Text Using Support Vector
Machine, Kluwer Academic, Norwell, MA, 2002.
http://dx.doi.org/10.1007/978-1-4615-0907-3

Jyothi Bellary - pursuing Ph.D from
Jawaharlal Nehru Technological University
Anantapur, Ananthapuramu. Life Member
of ISTE, Member of IAENG, Member of
IACSIT. Working as an associate professor,
Department of CSE, Aditya College of
Engineering, Madanapalle, Chittoor
District, Andhra Pradesh, India. Mail id :
jyothibellary@gmail.com. Presented and
published 3 research papers in National and
International Journals and 4 National and
International Conferences.

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 1, Issue 1 (2014) ISSN 2349-1469 EISSN 2349-1477

http://dx.doi.org/10.15242/ IJCCIE.E1113531 124

http://dx.doi.org/10.1007/978-1-4757-2440-0
http://dx.doi.org/10.1007/978-1-4757-2440-0
http://dx.doi.org/10.1007/978-1-4757-2440-0
http://dx.doi.org/10.1109/72.991427
http://dx.doi.org/10.1109/72.991427
http://dx.doi.org/10.1109/72.991427
http://dx.doi.org/10.1109/72.991427
http://dx.doi.org/10.1007/978-1-4615-0907-3
http://dx.doi.org/10.1007/978-1-4615-0907-3
http://dx.doi.org/10.1007/978-1-4615-0907-3
mailto:jyothibellary@gmail.com

Dr.E Keshava Reddy – Presently Professor
of Department of Mathematics and
Controller of Examinations, Jawaharlal
Nehru Technological University
Anantapur, Ananthapuramu. Guided two
Ph.D students and one M.Phil student.
Adjudicates 9 Ph.D Theses and 8 M.Phil
Theses. Many research papers published in
National and International Journals.
Presented many papers in National and
International Conferences. Delivered many
guest lectures at various colleges and
Universities in the country. Life member of
ISTE, IACSIT, Andhra Pradesh Society for

for Mathematical Sciences, Indian Mathematical Society, Calcutta
Mathematical Society, Allahabad Mathematical Society, Indian Science
Congress Association, Marathwada Mathematical Society and Indian Science
Congress. Authored 8 books for undergraduate courses. Mail-id :
keshava_e@rediffmail.com

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 1, Issue 1 (2014) ISSN 2349-1469 EISSN 2349-1477

http://dx.doi.org/10.15242/ IJCCIE.E1113531 125

mailto:keshava_e@rediffmail.com

