
  
Abstract— In this paper we address the issues related to 

scalability of Named Entity Recognition using Multi Class Support 
Vector Machines Solution using high-dimensional input space, by 
looking at the training computational time factor. This paper presents 
mathematical foundation of multi-class support vector machines and 
the evolution of the problem formulation aiming to reduce the 
training time by improving the optimization algorithms. We then 
have a look at a new cutting plane algorithm that accelerates the 
training process while achieving good out-of-the-box performance in 
linear time. The cutting plane algorithm is first implemented as a 
standalone java executable in order to study its effectiveness in 
reducing the computational time.  
 

Keywords— Computational Time, Multi-Class Classification, 
Support Vector Machines, Training.   

I. INTRODUCTION 
UPPORT Vector Machine (SVM) is a new and very 
promising classification technique developed by Vapnik 
and his group at AT&T Bell Laboratories [1, 7, 8, 9]. 

Standard SVM training has O(m3) time and O(m2) space 
complexities, where m is the training set size. It is thus 
computationally infeasible on very large data sets. Binary 
(two-class) classification using support vector machines 
(SVMs) is a very  well developed technique [1] [2]. Due to 
various complexities, a direct solution of multiclass problems 
using a single SVM formulation is usually avoided. The better 
approach is to use a combination of several binary SVM 
classifiers to solve a given multiclass problem. Popular 
methods for doing this are: one-versus-all method using 
winner-takes-all strategy (WTA SVM); one-versus-one 
method implemented by Max-Wins Voting (MWV SVM); 
DAGSVM [5]; and error-correcting codes [2]. Hastie and 
Tibshirani [3] proposed a good general strategy called 
pairwise coupling for combining posterior probabilities 
provided by individual binary classifiers  in order to do 
multiclass classification. Since SVMs do not naturally give out 
posterior probabilities, they suggested a particular way of 
generating these probabilities from the binary SVM outputs 
and then used these probabilities together with pairwise  
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coupling to do multi-class classification. Hastie and 

Tibshirani did a quick empirical evaluation of this method 
against MWV SVM and found that the two methods give 
comparable generalization performances. Platt [6] criticized 
Hastie and Tibshirani’s method of generating posterior class 
probabilities for a binary SVM, and suggested the use of a 
properly designed sigmoid applied to the SVM output to form 
these probabilities.   

II.  ALGORITHMS FOR TRAINING SVM 

A. Basic All-Together Multi-Class SVM 
The Basic All-Together Multi-Class SVM idea is similar to 

One-Against-All approach. It constructs k two-class rules 
where the jth function   separates training 
vectors of the class j from other vectors. There are k decision 
functions but all are obtained by solving one problem. Similar 
to the non-separable binary SVM case, the objective of the 
machine is to maximize the margin separating the different 
classes while minimizing the classification error of each data 
point as represented by the slack variable. For a  k-class 
problem with n training points, the multi-class support vector 
machine can be formulated as the minimization of  

 Q(w, b, ξ)   =                        

(1) 
 Subject to 

 
                                       
                     

(2) 
Where    is the input vector for data point i,  is the 

correct class for data point i,   is the slack variable 
associated with data point i relative to class j ( i.e. the error 
measure for misclassifying i as belonging to class j), and C is 
the regularization parameter determining the trade-off between 
the maximization of the margin and the minimization of the 
classification error. 

Figure 1 is an illustration of different slack variables relative 
to individual classes, which is the basic way of formulating the 
Multi-class SVM Problem. 
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  Fig. 1-Multi-Class SVM Error Representation 
 

In the basic multi-class SVM formulation, the machine 
needs to minimize k x n slack variables, in addition to 
maximizing k margins. The multi-class classification decision 
function is defined by  , 
i.e., a data point x is classified as the class j whose weights 
maximize the classification score for the point x. The 
constrained problem in (1) and (2) can be transformed into its 
unconstrained equivalent formulation by introducing the non-
negative Lagrange multipliers  : 

 
   

 

 

 

     (3) 
 

Where    

 
      otherwise                 (4)  

and the conditions for optimality are : 

 
                                                 (5)   

       (6) 
in addition to  being minimized in w,b,ξ 

(derivatives equal to zero). 

The dual formulation is obtained by reducing (3) to (6) using 
the kernel function . The dual 
formulation is to maximize: 

     (7) 
subject  to: 

     

          (8) 
     (9) 

Finally, the decision function for class j is given by: 

        (10) 
and the classification task for data point x is to find class j to 

satisfy    . 
 

By examining the dual formulation of the basic multi-class 
SVM learning problem as defined in (7) to (9), we observe the 
following: 
• Number of variables  in the optimization problem is equal 

to the number of training points n times the number of 
classes k, i.e., n x k variables. 

• Number of constraints to be satisfied zij is equal to number 
of training points n. 

• The upper limit for the weight variables  is the 
regularization parameter C. 
With n x k variables, the quadratic optimization problem 

would require O(n3k3) computational time to solve – assuming 
the quadratic optimizer used runs in third power order of the 
size of its input expressed in number of variables. This is the 
main issue with the multi-class SVM training. One can easily 
see that the training time would become prohibitive when a 
large number of training data points and classes is used for the 
learning task. 

B. Improving SVM Training Time 
From the discussion of the basic multi-class formulation, we 

see that any improvement in training time would require 
tackling one of the sources of delay by either: reducing the 
number of data points, reducing the data points’ 
dimensionality, and/or lowering the number of variables and 
constraints for the optimization problem. Each of these 
possibilities has been the subject of research activities aiming 
to improve SVM training. In this paper, we will focus on the  
approach which is to accelerate training by lowering the 
number of variables and/or constraints for the optimization 
task. Crammer and Singer (2001) reduce the number of 
optimization variables by reducing the number of slack 
variables  to  =  max( ) for j=1, .., k. In other words, 
it reduces the size of the optimization problem by considering 
only the highest slack for each data point across all classes, 
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thereby having one slack variable per data point. The primal 
and dual formulations are derived in the same way as for the 
basic SVM formulation. The mathematical proof is provided 
in (Crammer and Singer 2001) and extended in (Abe2005) to 
include bias terms. We will simply provide the initial 
optimization problem and the final dual formulation in order to 
contrast it with the basic formulation. Using the n slack 
formulation, the optimization problem is: 

  Q(w, b, ξ)   =         (11)                    

Subject to          

          (12)         

            
The dual formulation is to maximize 

 
     Subject to                              (13) 

0 for                               (14)  

                (15) 
 

and  the decision function for class j is given by                                                              

          (16) 
 

Comparing the basic formulation  to that of (Crammer and 
Singer 2001), we observe that the reduction of the number of 
slack variables from n x k to n did not increase the number of 
constraints and the final optimization problem is much simpler 
that the basic SVM problem. However, using a large number 
of data points n, the optimization time remains high as it 
requires O(n3) to complete. The optimization algorithm in 
(Crammer and Singer 2001) is implemented in SVM-
Multiclass (Tsochantaridis et al. 2004). In order to further 
improve the training time, one may attempt to reduce the 
number of data points considered by the optimization 
algorithm. This may be achieved by approximating the total 
accurate solution by one that attempts to reach a close 
accuracy by using a smaller number of data points. Cutting 
plane algorithms are developed to approximate convex 
optimization problems by finding data points that approach the 

optimal solution and discarding the other points. 

C. SVM Structural 1-Slack Formulation 
We performed a number of experiments using both single 

class and multi-class cases in order to identify ways to improve 
the multi-class training time  which aimed to identify the 
scalability issues with All-Together multi-class SVM. Using 
SVM-Light (Joachims 1998a, 2002) for the single class 
experiments and SVM-Multiclass (Crammer and Singer 2001; 

Tsochantaridis et al. 2004) for multi-class problems, we 
observe that the number of support vectors generated in both 
cases is O(n0.8). In fact, SVM-Multiclass uses SVM Light’s 
quadratic optimizer, where the input to the optimizer is a 
realization of (Crammer and Singer 2001). The O(n0.8) is an 
experimental observation using the same training dataset for 
binary and multi-class training. In general, the worst case 

estimate for the number of support vectors is O(n), where all 
training points are potentially support vectors. . The training 
time using SVM-Light and SVM-Multiclass is O(n2), where the 
multi-class case is O(k2) slower than the single case case, k 
being the number of classes. With the availability of the 
improved binary SVM implementation in SVM-Perf (Joachims 
2006) which reduces the training time to linear time, and 
knowing that the multi-class solution can be built using the 
single class one, we analyzed the improved binary 
implementation in SVM-Perf in order to investigate ways to 
extend the solution to support multi-class training. SVM-Perf 
(Joachims 2006) is based on a newer SVM formulation than 
that of (Crammer and Singer 2001) which attempts to reduce 
the number of slack variables from n variables to just one. The 
new formulation is referred to as 1-slack formulation. 
The 1-slack structural formulation is (excluding the bias 
terms): 

                                       (17) 

          (18) 

Such that                
 

In this formulation, one common slack variable ξ which 
constitutes an upper bound on all training errors is used. 
However, the number of constraints in this case is 2n, one 
for each possible vector c= (c1 ,c2 ,...,cn )є{0,1}n. Each 
constraint vector corresponds to the sum of a subset of 
constraints from the n-slack formulation in (11) and (12). The 
new constraint vectors constitute the input to the quadratic 
optimizer.  

SVM-Perf (Joachims 2006) uses a binary cutting plane 
algorithm in order to reduce the number of constraints in the 
problem while providing an approximate solution in a constant 
number of iterations. Proof of equivalence of the 1-slack 
formulation to the n-slack formulation and convergence of the 
cutting plane algorithm are provided in (Joachims 2006). 
SVM-Perf binary training algorithm is the following: 
 
Algorithm 1 : Algorithm for training binary classification SVM 

1: Input: S={( ,  ),...,( , , )},y  {-1,1 },C  
 2: C=  (C is the set of constraints for input to the optimizer) 
 3:  repeat  (W,  

 4:  such that  

 
 5:  for i=1……n do 
 6.      

    0  Otherwise 
 7:   end  of for  
 8:   
 9:  until    

 10: return (W,  
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D.  SVM – PerfMulti : New Multi-Class Instantiation 
In the general case, the SVM structural 1-slack 

formulation(Joachims 2005) is the following (unbiased 
formulation(unbiased formulation):   

                 (19) 
Such that  
             (20) 
where    

 
is a set of possible k labels and  is a function that 
describes the match between  and  . The 

objective is to maximize          where  

                                                 (21) 
Designing the structure of the function  and a 

suitable training loss function   for a given problem 
such that the argmax is computed efficiently is the main 
objective for a particular instantiation of SVM-Struct V3.0  and 
is left to the designer of the solution. The general algorithm to 
solve a quadratic optimization problem using the multivariate 
SVM  1-slack formulation (Joachims 2005) is the following: 

 
Algorithm 2: Algorithm for solving multivariate 

quadratic optimization problems 

1:Input: ={(   ), ={(  )},y  {-1,1 },C,  

2:C=  (C is the set of constraints for input to the 

optimizer) 

3:  repeat (W,  

4:such that  

 

5:  for i=1……n do 

6:      

    0  Otherwise 

7:   end of  

8:   

9:  until    

10:  return (W,  
 

Tsochantaridis et al. (2004) show that the algorithm 
terminates after a polynomial number of iterations. The set of 
constraints C is iteratively filled with the most violated 
constraints found in the input training dataset. Algorithm 1 is 
an instantiation of Algorithm 2 for the binary classification 
case. 

E. Accelerated Cutting Plane Algorithm 
 

The 1-slack SVM structural formulation expedites the 
optimization process by reducing the number of variables to be 
optimized while shifting the decision on how to prepare the 
quadratic optimizer’s input data to the solution designer. Using 
an error rate loss function, SVM-Perf builds one constraint 

vector for all data points and adds it to the input data vectors 
for the optimization process. The individual constraint value is 
zero if the point is correctly classified, or one otherwise. 
Inspired by the improved training time of SVM-Perf as 
compared to that of SVM-Light, we develop a cutting plane 
algorithm for handling multiple classes at the same time using 
a loss function based on error rate. In this section we describe 
a new multi-class instantiation of SVM-Struct V3.0 
(Tsochantaridis et al. 2005) – SVM-PerfMulti. Using the SVM 
1-slack formulation, we introduce a cutting plane algorithm 
that identifies the most violated constraints to be used for the 
quadratic optimization. The cutting plane algorithm is inspired 
by the geometrical intuition behind support vector machines 
illustrated in Figure 1 and Figure 2. 

 

 
Fig. 2 – SVM Non-Linearly Separable case 

 

Considering the general non-linearly separable case, the 
objective of the optimization problem is to: 

• Maximize the margin(s) separating the hyperplanes 
• Minimize the slack error for each data point. 

In addition to the optimization objectives, the algorithm also 
attempts to boost the classification performance of the 
machine. The cutting plane algorithm iteratively increases the 
gap between the positive and negative examples for each class, 
which refines the input to the quadratic optimizer during 
consecutive learning iterations and accentuates the impact of 
the scarce positive examples. 
Lines 6 to 8 of algorithm aim to satisfy line 4 of Algorithm 2 
by finding the set of most violated constraints that  
maximizes  

                          
 

The SVM-PerfMulti (Habib 2008) cutting plane algorithm 
identifies the most violated constraints by maximizing the 
difference between the classification score of a data point 
relative to its own class and the best score among all other 
classes. If the difference is greater than a loss measure 
threshold, the data point is considered to be correctly classi_ 
fied and therefore its associated constraint is not violated. 
Otherwise, the constraint is violated. In other words, the 
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greater the difference in classification score between the 
correct classification and the next best, the more we consider 
than the trained model is capable of correctly classifying 
unknown data points. Since the cutting plane decision is based 
on a slack error criterion, it falls in the category of a slack-
rescaling algorithm. However, we use the margin-rescaling 
option during the optimization process, where individual 
weights are scaled by a fixed margin factor that is independent 
of the current loss value.  

 
 

Algorithm 3: Algorithm for training multi-class 

classification SVM 

1: Input: S={( ,  ),...,( , , )},y  {1..k },C, ,a 
2:C=  (C is the set of constraints for input to the 

optimizer) 

3: l=initil example loss value=100.0 / n 

4:  repeat  

 
5:such that  

 
  Where  W={W1….Wk} 
6:  for i=1……n do 

7:      
              =  0  Otherwise 
8:   end for  

9:   

10:  
11. until    

12:  return (W,  
 

 
The initial loss measure threshold is equivalent to that of a 

total  loss, i.e., 100% loss distributed among all data points. 
The loss threshold is increased after each  iteration thereby 
separating the correct vs. incorrect classifications by a larger 
distance. We use a heuristic increment based on a fraction of 
the highest correctly  classified score.  

To find those  positions that maximize line 4 of Algorithm 2 
–      

, – a sufficient 

condition is to maximize   by classifying the input 
vectors using the trained model after each optimization cycle. 
If an input example is incorrectly classified, its associated 
constraint would be considered violated. In this case, finding 
the most violated constraints’ criteria would be: 
 

    

         =     0    otherwise              (22) 

 
We will now show that all constraints found by the criteria 

in the above eqution – all incorrectly classified points – are 
also found by line 7 of Algorithm 3 where a constraint is 
considered violated if: 

 

 
i.e.          (23) 

If the correct classification score for data point i is less than 
the maximum score for all incorrect 
classes, ,  it will also be less 

than the maximum score plus a loss threshold l, 

. 
This means that all 

violated constraints that need to be found in order to satisfy 
line 4 of Algorithm 2 are also found by line 7 of Algorithm 3, 
even if no loss threshold comparison is performed (l=0). 
However, adding the loss threshold comparison will cause a 
subset of the correctly classified data points to be flagged as 
incorrectly classified and added to the violated constraints. 
The loss threshold term l is therefore making the correct 
classification criteria more strict and requiring that the correct 
example is as far as possible for all other classes. Moreover, 
by incrementing l after each optimization cycle, the 
classification is further refined and the separation between 
classes is widened. 

III. BOOSTING CLASSIFICATION PERFORMANCE 
We hypothesize that the effect of the stricter correct 

classification decision has the effect of boosting the 
classification performance. Widening the gap between the 
correct and incorrect classification for an example has the 
effect of boosting the weight of the positive examples for the 
correct class. As part of the investigative experiments , one of 
the single class experiments using SVM-Light assessed the 
effect of boosting the weights of positive examples by some 
multiplier factor. Using a preset boosting factor led to 
improved performance measures up to a certain level, up to a 
certain point after which performance decreased with higher 
boosting factors. In Algorithm 3, we do not apply a preset 
boosting factor but rather use a fraction of the maximum 
correctly classified score to increase the loss threshold 
measure. This is a heuristic value indicating the highest sphere 
of correct scores. One may use other heuristic measures, such 
as the current value of the loss function ,  . However, 
we observed that using the maximum correct score led to the 
best and more consistent results with different experimental 
datasets. 

Algorithm 3 falls under the category of slack-rescaling 
algorithms because the violation criteria is based on the 
difference between the correctly classified score and the 
incorrect ones. We use slack rescaling for finding the most 
violated constraints yet use margin rescaling for the 
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optimization phase. According to the learning constraint in 
(15), all learned weights are limited by the value of the 
regularization parameter C which governs the trade-off 
between the slack minimization and the margin maximization. 
Using the performance boosting mechanism in Algorithm 3 
leads to a faster stabilization of both optimization objectives 
thereby causing the trained model to reach a good out-of-the-
box performance independent of the value of C when binary 
features are used. 

IV. REDUCING MEMORY REQUIREMENTS 
Using the SVM structural formulation for either binary or 

multi-class learning, the training time is improved by 
combining feature vectors into vector(s) of most violated 
constraints. The generated vectors require larger memory as 
the size of each constraint vector is O(f) in the binary case and 
O(kf) in the multi-class case, where f is the number of features 
in the training set and k is the number of classes. E.g., for a 
training set with 1,000,000 features and 10 classes – and 
assuming 8-bytes per feature for the feature number and its 
weight – a binary constraint vector may need up to 8MB of 
memory while a multi-class vector may need up to 80MB. 
These estimates constitute a worse-case scenario, where all 
features are represented in each vector for all classes. In 
practice, using the JNLPBA-04 training dataset with over a 
million features and 11 classes, the multi-class constraint 
vector size was about 0.5MB. Although the support vector size 
in multi-class training could reach O(k) multiples of the 
corresponding size in the binary case, experiments found that 
the multi-class overall memory requirements using SVM-
PerfMulti do not approach this worst case possibility. Since 
the memory needed depends on the number of constraints – or 
in other words, the number of learning iterations – reducing 
the number of iterations will lead to a lowered memory 
consumption. Algorithm 3 accelerates the learning process 
thereby reducing the total number of iterations (and support 
vectors). In order to ensure that all memory allocations 
performed during the learning process are necessary, we 
performed extensive process time and memory profiling as 
part of the empirical analysis. We identified one area of 
improvement in SVM-Struct V3.0 where the trained model is 
copied at the end of the learning iterations. With the high 
amount of memory needed for a trained model using a large 
high-dimensional dataset, experiments using larger data sizes 
failed due to lack of memory and the overall program aborts 
without saving the trained model although the actual learning 
has been completed. Another area of improvement that we 
identified is to alter the way that SVM-Light shrinks the 
working set of constraint vectors by using a negative number 
of iterations-to-shrink. This alteration has the effect of 
lowering the number of support vectors based on inconsistency 
independent of how long the support vector has been 
deactivated. The final effect is a reduced number of support 
vectors in the working set.  

 

V. CONCLUSION 
 

Having addressed ways to reduce the necessary online 
memory needed for the learning process, additional reduction 
may be achieved by using a different medium to store 
examples and/or support vectors. In the future work, we 
describe a database supported architecture to alleviate the 
online memory needs as well as provide a user friendly 
framework for SVM learning and classification. 
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