
Maximal Frequent Itemsets Based Hierarchical

Strategy for Document Clustering

Noor Asmat
1
, Saif Ur Rehman

2
, Jawad Ashraf

3
 and Asad Habib

3

Abstract— Text document clustering is an important issue in the

field of information retrieval and web mining. Huge amount of text
documents are needed to be clustered so that search engines can

retrieve these documents efficiently and effectively. In this paper we
present a novel approach for clustering text documents based on
Maximal Frequent Item-set (MFI). Our proposed MFI-HC (Maximal
Frequent Item-Set - Hierarchical Clustering) algorithm uses
minimum k size MFIs to form initial sub-clusters. We use
agglomerative hierarchical approach to merge the sub-clusters on the
basis of highest similarity. Our proposed technique helps in reducing
dimensions of the text and provides better clustering quality.

Keywords— Clustering, Hierarchical, Maximal Frequent Item-

set.

I. INTRODUCTION

UE to large corpus of text documents, we are normally

facing problem of scalability in information retrieval.

Besides scalability, the high dimensional nature of text

documents create problem in clustering process as well. To

retrieve the clusters easily, we need to tag them with relevant

cluster labels, which is not possible in the case of high

dimensional data. All these mentioned problems lead to the

poor performance of information retrieval systems both in

term of time and precision.
Today’s web search engines have low precision as far as

text document searching is concerned. When a user wants to

retrieve some information, many irrelevant text documents are

also retrieved. The challenges to confront include: retrieval of

most relevant text documents, reducing high dimensionality

of text documents and providing comprehensible description

of text documents.

There is a room for improvement in current text document

clustering system. Addressing the above mentioned problems,

we present a novel approach to provide better quality clusters.

Clustering is a technique to automatically group similar items.
Clustering aims at lower inter-cluster similarity and higher

intra-cluster similarity. I.e. all the clusters should be different

from on another while the items of a single cluster should be

similar. Frequent Item-set (FI) is a technique which is used to

retrieve some frequent combination of terms present in text

documents. Apriori is a well known FI extracting algorithm.

Starting from 1 size Item-sets, Apriori works in k-steps. At

each step k, it generates k-size Item-sets until the frequency of

IIT, Kohat University of Science and Technology, Kohat-26000, Khyber,

Pakhtunkhwa, Pakistan. Email: noor_kust28@yahoo.com

Item-sets at a particular step is lower than the threshold value

[1]. FP-Growth is another FI extracting algorithm. FP-Growth

works in a divide-conquer approach using FP-tree. The

efficiency of FP-Growth is relatively very fast as compare to

Apriori because FP-Growth reduces the size of dataset to be

searched [2]. An FI will be known as MFI if there exists no

super Item-set of that particular FI [3]. MFI is the compressed

form of FIs and is the basis of our algorithm.

Partitioning, graph-based and Frequent Pattern based
clustering are some of the techniques used for document

clustering.

In partitioning method, the algorithm divides the dataset

into desired number of non-overlapping groups. Each item is

assigned to only one group. Some of the partitioning

algorithms are k-means [4], variants of k-means like k-

medians [5] and CLARANS [6]. Both k-means and CLARAN

groups the data items based on higher similarity but k-means

tries to minimize sum of squared differences while CLARAN

tries to minimize cost of node with their respective medoids.

Graphical approach constructs graph containing text

documents as vertices. Every two vertices are connected with
edges and edges are assigned weights. Edges’ weights are

used to calculate the similarity between two documents [7].

Most of the graphical approaches use Hierarchical or tree

based methods. Hierarchical method may either be

agglomerative or divisive [8]. ROCK [9] and CHAMELEON

[10] are the most popular hierarchical clustering algorithms.

ROCK is an agglomerative hierarchical clustering algorithm.

ROCK constructs a sparse graph of the data and then merges

the clusters on the basis of aggregate inter-connectivity.

CHAMELEON is another agglomerative clustering algorithm.

CHAMELEON first divides the data into sub-clusters and
then merges the sub-clusters on the basis of Relative Inter-

Connectivity (RI) and Relative Closeness (RC).

Another approach is Frequent Pattern based clustering. In

this approach clusters are created using FI extracted from any

suitable FI discovery algorithm. Each cluster is assigned an FI

as cluster label and all the supporting documents are assigned

to that particular cluster. Frequent Pattern based clustering

helps in reducing dimensionality of text documents and it

provides understandable cluster label as well. FTC [11],

HFTC [11], FIHC [12] and MFTCS [13] are some of the

frequent item-set based text documents clustering algorithm.

The detailed explanation of these algorithms is given in the
section of related work.

The outline of our paper is as following. Section 2 of the

paper briefly explains some well known related algorithms in

detail. Section 3 presents our proposed framework, proposed

algorithm and a solved example. Section 4 presents our

experimental evaluation.

D

Int'l Conference on Computer Science, Data Mining & Mechanical Engg. (ICCDMME’2015) April 20-21, 2015 Bangkok (Thailand)

http://dx.doi.org/10.15242/IIE.E0415066 118

II. RELATED WORK

Many researchers have presented different algorithms in
literature. Hierarchical and Partitioning methods are the most

commonly used approaches. Normally partitioning algorithms

are based on some variants of Vector Space Model (VSM).

VSM is based on words frequency and thus it is extremely

affected by the high dimensionality of the text documents.

These algorithms can not deal with high dimensional text

documents especially in very large databases. To avoid this

problem of high dimensionality of partitioning algorithms;

many researchers used hierarchical approach in combination

with Frequent Pattern based techniques. Frequent-Pattern-

based algorithms help in reducing dimensionality of the text

and are very efficient as compare to partitioning and
hierarchical algorithms. Some of these algorithms are

discussed here.

F. Beil et al presented two algorithms named as Frequent

Term Clustering (FTC) and Hierarchical Frequent Term

Clustering (HFTC). FTC is a flat clustering algorithm while

HFTC is a hierarchical clustering algorithm. For the creation

of clusters they used Apriori algorithm. FTC and HFTC used

a greedy search approach to merge the cluster with maximum

overlap. One of the draw back of FTC algorithm is that it only

considers overlap of clusters. Moreover the greedy search

approach can not guarantee optimum clustering system. [11].
FIHC [Frequent Item-Set Hierarchical Clustering] works in

four phases. In first phase, initial Clusters are created using

FIs extracted using Apriori algorithm. In second phase

clusters are made disjoint by assigning the documents to the

best cluster using a similarity score. In third and forth phases

Parent-Child pruning and sibling merging are. FIHC is very

slow for a small threshold value, and also small threshold

value is required for higher precision. It is a big problem to

balance between scalability and precision [12].

C. Su et al presented MFTSC (Maximal Frequent Term Set

Clustering) algorithm. MFTCS extracts MFIs using FP-

Growth [2] algorithm and then it merges these MFIs on the
basis of a k-mismatch function. K-mismatch means that

MFTCS will merges the cluster if the number of mismatch

items between the clusters are less than k. K is a user

specified integer value. To decrease the redundancy, clusters

are merged based on an overlap function. After this some

documents remain uncovered. Uncovered documents are

assigned to the cluster of highest similarity with that

particular document. The value K value may results in best or

worst result depending on the nature of dataset. Moreover

MFTSC is failed to provide disjoint clusters. The k-mismatch

function is also a form of overlap so MFTCS uses overlap on
different stages without considering any other issue [13].

All the algorithms were good attempts but still there are

some common problems that remain unsolved. For higher

support values, these algorithms return low quality clusters

but improved run time while low support value returns good

quality cluster but takes a lot of time for larger datasets.

For low support, FIs discovery algorithms return a very

large number of small size FIs or MFIs that ultimately leads

to the slow performance of algorithm and increases the run

time at a very high rate. Reason behind the slow run time is

that larger amount of FIs or MFIs need a larger amount of

merging cycles. Thus we need to reduce the number of MFIs

to get optimum results.

Another problem is that most often these small sizes FI or

MFIs take several cycles to merge smaller FIs or MFIs to

their final MFIs while merging sub-clusters to the most

similar clusters again and again. We need to merge each sub-
cluster to its most final destination without passing through

unnecessary cycles.

III. PROPOSED FRAME WORK

The algorithm we propose is based on an agglomerative

hierarchical approach that helps in reducing dimensionality

and improving efficiency. Our algorithm helps to avoid

repeating unnecessary merging cycles as it eliminates small
size MFIs and quickly merges sub-clusters to their final

clusters. Small size MFIs are eliminated by giving an extra

parameter to the FP-Growth algorithm that is the minimum

size of MFI. Produced MFIs are used for the creation of sub-

clusters and the labels of that particular cluster. The use of

MFIs instead of FIs improves effectiveness and accuracy at an

amazingly rate and the elimination of small size MFIs adds

further improvement. The main phases of the proposed

algorithm can be expressed by the following diagram.

;

Fig. 1. System Architecture

To implement our algorithm, we have used Classic4,

Reuter8 and Wap datasets downloaded from [14].

Preprocessing steps include stop-words removing and

stemming. Moreover terms are replaced with their respective

terms IDs and documents are converted to transactional form.
After performing these necessary preprocessing steps, MFIs

based sub-clusters are created and then similar sub-clusters

are merged to create final clusters.

Algorithm:

Procedure MFI-HC ()

Input: D, k, Min_Sup.

Output: Clusters

Method:

1. MFI=FP-Growth(D, k, Min_Sup);

2. C=Assign_Docs(Dk, MFI);

3. for n Num_Of_Clusters
for each Cluster Ci € C

 Loc_Max_Sim= Sim(Ci, G);

Merge(Ci, C Loc_Max_Sim);

Input Text
Documents

MFIs based
Sub-clusters

Merging
Similar

Clusters

Clusters Preprocessing

Stop words
Removal

Stemming

Assigning
Terms IDs

Creating
Transaction

Set

Int'l Conference on Computer Science, Data Mining & Mechanical Engg. (ICCDMME’2015) April 20-21, 2015 Bangkok (Thailand)

http://dx.doi.org/10.15242/IIE.E0415066 119

Remove Ci, C Loc_Max_Sim;

end

end

4. return Cluster;

D is a set of transactions that we have already created. FP-

Growth is an MFI discovery algorithm that takes a set of
transaction as input. MFIs of min-size k are extracted for a

specific support value. Based on these extracted MFIs, sub-

clusters are created and the terms present in MFIs are

considered as the labels of the clusters. For the creation of

initial sub-clusters and for merging of similar clusters, we

need a scoring function for the purpose of identifying the best

cluster. The scoring function we used is based on the overlap

between two patterns. The overlap may exist between two

cluster points or between document and a cluster point. Our

scoring function is basically the sum of intersection of two

sets and the percentage of the size of set for which we are

going to compute the merging score. The purpose of adding
size factor is because we want to merge the cluster with the

most similar and largest cluster to avoid extra cycles of

merging.

The following scoring function is used for finding the best

match for a document.

 () *

+

In the above function, Di represents a document i and Cj

represents a sub-cluster j. Here | Di ∩ Cj| represents the

cardinality of the intersection between Di , Cj and |Cj |

represents the cardinality of set j. The score of Di will be

calculated against a number of sub-clusters say Cj where Cj €

C. The function allots highest score to the sub-clusters that

have highest overlap and is the largest in size. The same
procedure will be performed for merging of clusters, but

instead of comparing documents Di with clusters, cluster to

cluster comparison will be performed. For merging of cluster

we will use the above scoring function with a slight change.

Fig. 2 Creating Disjoint Sub-Clusters

 () *

+

Suppose we have a document-set consisting of 7 documents.

After performing necessary preprocessing steps, we got the

following transaction-set and their respective MFIs.

TABLE I

 TRANSACTION_SET

For min-size=4, FP-Growth algorithm will delete all the

MFIs of size 1, 2 and 3. For above set of transactions min-

size=0, 1, 2, 3 returns the same set of MFIs because the above

transactions have no MFI of size 1 or 2. To explain the

algorithm, we select min-size=3 and the complete procedure

of assigning the documents to the relevant clusters is shown in

Fig 2.

The nodes at the left side of the graph represent documents
and the nodes at the right side of the graph represent sub-

clusters. For each document, the scoring values are calculated

against each sub-cluster and then the document is assigned to

the cluster of highest score value. The scoring value of Doc_0

for all the sub-clusters are computed and are given in the first

node of the graph as below. To assign the documents D0 to

the most suitable sub-cluster, the similarity score is calculated

as following.

 ()
 ()

+

= 1+4/100

=1.04

Here Score(M0 D0) represents the score of assigning

document_0 to MFI_0, D0 represents the first document and

M0 represents the first MFI. | Intersection (D0, M1) |

represents the number of items that are common to both D0
and M0. |M0| represents the number of items in M0. Here

1.04 is the calculated Score(D0M1), 0 is Score(D0M1)

and 5.05 is Score(D0M2) etc. D0 will be merged with sub-

cluster M2 as D0 has highest score for M2. Above procedure

is repeated until all the documents are assigned to any of the

sub-cluster and we get the following sub-clusters.

TABLE II

ASSIGNED DOCUMENTS

MFI_Set Terms_ID Documents

M0 1, 7, 8, 9 D6

M1 6, 8, 9 D5

M2 1, 2, 3, 4, 5 D0, D1, D2

M3 1, 3, 4, 5 Deleted

M4 6, 7, 8 D4

M5 5, 6, 7 D3

Int'l Conference on Computer Science, Data Mining & Mechanical Engg. (ICCDMME’2015) April 20-21, 2015 Bangkok (Thailand)

http://dx.doi.org/10.15242/IIE.E0415066 120

Fig. 2 Creating Disjoint Sub-Clusters

Nodes at the left side of the above graph represents sub-

clusters and the nodes at right side represents final clusters

that are been produced after merging. To merge the sub-

cluster M0, the scores of M0 with all the rest of the MFIs are

calculated and are presented in the first node of the graph at
left.

 ()
 ()

+

= 2+3/100= 2.03
Sub-cluster M0 has highest scoring value for M1, so M0 is

merged with M1. Thus we get two final clusters that are been

shown at the right side of the graph with the documents and

their respective cluster labels. We used an agglomerative

hierarchical clustering approach for the clustering and the

overall clustering process using agglomerative hierarchical

approach is given.

Fig. 4 Agglomerative Hierarchical Approach

IV. RESULTS AND EVALUATION

In this section we evaluate the performance of our proposed

framework based on different min-size of MFIs. For the same

dataset we executed FIHC based on similar support values.

FIHC is based on hierarchical approach and also using FIs for

clustering. We executed our program on Window 7 with core
2 duo 1.33 GHz CPU and 2 GB memory. We obtained the

FIHC 1.0 from the [15].

F-measure is the most commonly used evaluation measure.

Good clustering algorithm aims to capture larger number of

documents from a natural class. F-Measure is based on recall

and precision [12]. Precision is the term representing all

correctly captured documents while recall is the term

representing all the captured documents regardless of

accuracy. The recall, precision and F-Measure will be

calculated as follows:

 ()

 ()

 ()
 () ()

 () ()

Where K is the natural class of dataset and j is the cluster.

nij is the number of documents of class Ki that are present in
cluster Cj. |Ki| is the number of documents in class i and |Cj| is

the number of documents in cluster j. The weighted sum of

maximum F values for all the natural classes is known as F of

clustering result.

 () ∑
| |

 * ()+

We used the most commonly used datasets e.g. Classic4,

Reuters8 and Wap. All the used datasets are collection of

English text documents and contains different number of

natural clusters. The following table shows a short summary

of these datasets.
TABLE III

DATASET

Dataset # Docs # of Classes

Wap 3900 21

Classic 7095 4

Reuter 7674 8

The F-Measure and run time comparison of the above

datasets based on different parameters are shown in detail. For

MFI-HC we used min-size=1, 2, 3 and 4 and for FIHC we
used 30% and 40% support. The number of clusters for both

algorithms remains same. The produced results are shown

below.

D0 D1 D2 D3 D4 D5 D6

M1 M0 M4 M5 M2

M2, M5 M0, M1, M4 D0, D1, D2, D3 D4, D5, D6

Int'l Conference on Computer Science, Data Mining & Mechanical Engg. (ICCDMME’2015) April 20-21, 2015 Bangkok (Thailand)

http://dx.doi.org/10.15242/IIE.E0415066 121

TABLE IV

F-MEASURE AND TIME OF CLASSIC4 DATASET

Cluster Sup F-Measure Time

MFIHC FIHC MFIHC FIHC

1 2 3 4 30% 70% 1 2 3 4 30% 70%

5 1 0.44 0.53 0.54 0.45 0.59 0.44 452 325 93 12 304 305

 2 0.44 0.46 0.27 0.45 0.52 0.42 70 35 2 1 64 58

 3 0.55 0.23 0.0 0.45 0.60 0.53 24 9 1 0 21 21

10 1 0.56 0.50 0.56 0.45 0.55 0.41 432 334 94 12 335 285

 2 0.44 0.42 0.24 0.45 0.49 0.40 69 35 2 1 69 66

 3 0.59 0.23 0.0 0.45 0.58 0.48 24 9 1 0.5 24 21

20 1 0.45 0.51 0.53 0.45 0.51 0.41 447 321 89 12 319 273

 2 0.44 0.42 0.24 0.45 0.46 0.40 69 35 2 1 78 64

 3 0.53 0.23 0.0 0.45 0.46 0.40 24 9 1 0.5 63 56

40 1 0.47 0.47 0.52 0.45 0.47 0.38 321 90 89 12 352 315

 2 0.44 0.42 0.24 0.45 0.45 0.37 69 35 2 1 71 58

 3 0.53 0.23 0.0 0.51 0.42 0.36 21 9 1 0.5 21 6

TABLE V

F-MEASURE AND TIME OF REUTER8 DATASET

Cluster Sup F-Measure Time

MFIHC FIHC MFIHC FIHC

1 2 3 4 30% 70% 1 2 3 4 30% 70%

5 1 0.51 0.51 0.50 0.49 0.70 0.54 1090 2359 2187 1784 1075 2419

 2 0.50 0.50 0.62 0.49 0.66 0.67 368 367 336 244 163 151

 3 0.49 0.58 0.61 0.51 0.71 0.66 128 127 106 67 62 60

10 1 0.51 0.50 0.57 0.49 0.65 0.54 2377 2396 2213 1774 997 974

 2 0.50 0.45 0.61 0.49 0.68 0.70 369 364 325 219 153 150

 3 0.48 0.54 0.61 0.51 0.69 0.53 128 127 106 66 62 59

20 1 0.51 0.51 0.69 0.49 0.65 0.57 2366 2410 2266 1842 998 972

 2 0.49 0.45 0.61 0.60 0.68 0.63 369 364 323 219 153 153

 3 0.60 0.64 0.56 0.51 0.69 0.52 128 127 104 65 62 59

40 1 0.51 0.49 0.70 0.47 0.65 0.60 2358 2422 2247 1791 994 970

 2 0.47 0.49 0.65 0.60 0.68 0.68 367 360 320 217 153 147

 3 0.60 0.65 0.50 0.29 0.65 0.52 127 131 109 67 63 59

TABLE VI

F-MEASURE AND TIME OF WAP DATASET

Cluster Sup F-Measure Time

MFIHC FIHC MFIHC FIHC

1 2 3 4 30% 70% 1 2 3 4 30% 70%

5 1 0.38 0.38 0.38 0.29 X X 175 165 164 165 x x

 2 0.38 0.38 0.38 0.29 X X 34 32 32 32 x x

 3 0.38 0.38 0.38 0.29 0.44 0.36 12 11 12 12 390 370

10 1 0.38 0.38 0.38 0.29 x x 175 166 168 165 x x

 2 0.38 0.38 0.38 0.29 x x 33 31 31 31 x x

 3 0.38 0.38 0.38 0.38 0.53 0.43 12 12 11 12 394 397

20 1 0.38 0.38 0.38 0.29 x x 174 172 167 166 x x

 2 0.38 0.38 0.38 0.29 X x 34 33 32 32 x x

 3 0.38 0.38 0.38 0.38 0.56 0.43 12 12 12 11 425 374

40 1 0.38 0.38 0.38 0.29 x x 172 166 161 161 x x

 2 0.38 0.38 0.38 0.29 x x 33 31 32 31 x x

 3 0.38 0.38 0.38 0.29 0.50 0.42 12 11 11 11 410 392

The above results are expressed graphically to give a clear picture.

Int'l Conference on Computer Science, Data Mining & Mechanical Engg. (ICCDMME’2015) April 20-21, 2015 Bangkok (Thailand)

http://dx.doi.org/10.15242/IIE.E0415066 122

Fig. 5. F-Measures and Time of classic4 dataset

Fig. 6. F-Measures and Time of Reuter8 dataset

Fig. 7 F-Measures and Time of Reuter8 dataset

From the above results we can easily realize that MFI-HC

is more efficient as compare to FIHC. For classic and wap

MFI-HC have a prominent improvement in run time of the

clustering algorithms. For Reuter8, FIHC is more efficient

than FIHC but it can give efficient result if we increase the

support. For wap dataset both in MFI-HC and FIHC, if we

select a very small support then it takes very huge amount of

memory, slows down the system and is unable to perform
clustering.

For the cluster quality i.e. F-Measure, FIHC has different

trends over different parameters. FIHC produce good F-

Measure for smaller cluster support but is not efficient, while

larger cluster support can produce good F-Measure but is not

very efficient. From the results of classic dataset we can see

that for 70% cluster support FIHC has a better clustering

quality but is not efficient and for 30% cluster support MFI-

HC outperforms FIHC both in terms of run time and F-

Measure. For the above set of parameters MFI-HC could not

produce good F-Measure while FIHC has produced relatively
good clustering quality. From the F-Measures produced by

MFI-HC, we can see that for some set of parameters we get

very small F-Measure i.e. below 0.30, the reason behind this

decrease of F-Measure is that the number of required clusters

is less than the number of produced MFI’s. Thus algorithm

fails to merge similar clusters.

In short, we can say that using different parameters, both

MFI-HC and FIHC has different impact on run time and

quality. For MFI-HC if we select larger size of MFIs then the
algorithm produce good quality both in terms of rum time and

cluster quality. And FIHC can produce good quality for very

lower support but is very slow.

The nature of dataset is no doubt a very important factor for

any clustering algorithm. No single algorithm can produce

perfect results for all types for environment and same is the

case with MFI-HC.

V. CONCLUSION

Most of the existing text clustering approaches does not

assure the needs of clustering system. They are not capable of

Classic:F-Measure

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C:5
S:1

C:5
S:2

C:5
S:3

C:10
S:1

C:10
S:2

C:10
S:3

C:20
S:1

C:20
S:2

C:20
S:3

C:40
S:1

C:40
S:2

C:40
S:3

Number of Clusters and Support

F
-M

e
a
s
u

re

MFIHC: Length 1
MFIHC: Length 2
MFIHC: Length 3
MFIHC: Length 4
FIHC: 30%
FIHC: 70% 0

50
100
150
200
250
300
350
400
450
500

C:5
S:1

C:5
S:2

C:5
S:3

C:10
S:1

C:10
S:2

C:10
S:3

C:20
S:1

C:20
S:2

C:20
S:3

C:40
S:1

C:40
S:2

C:40
S:3

F
-M

e
a

s
u

re

Number of Clusters and Support

Classic: Time

MFIHC: Length 1

MFIHC: Length 2

MFIHC: Length 3

MFIHC: Length 4

FIHC: 30%

FIHC: 70%

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

C:5
S:1

C:5
S:2

C:5
S:3

C:10
S:1

C:10
S:2

C:10
S:3

C:20
S:1

C:20
S:2

C:20
S:3

C:40
S:1

C:40
S:2

C:40
S:3

F
-M

e
a

s
u

re

Number of Clusters and Support

Re8:F-Measure

MFIHC: Length 1

MFIHC: Length 2

MFIHC: Length 3

MFIHC: Length 4

FIHC: 30%

FIHC: 70%

Re8:Time

0

500

1000

1500

2000

2500

3000

C:5
S:1

C:5
S:3

C:10
S:2

C:20
S:1

C:20
S:3

C:40
S:2

Number of Clusters and Support

F
-M

e
a

s
u

re

MFIHC: Length 1
MFIHC: Length 2
MFIHC: Length 3
MFIHC: Length 4
FIHC: 30%
FIHC: 70%

0
50

100
150
200
250
300
350
400
450

C:5
S:1

C:5
S:2

C:5
S:3

C:10
S:1

C:10
S:2

C:10
S:3

C:20
S:1

C:20
S:2

C:20
S:3

C:40
S:1

C:40
S:2

C:40
S:3

F
-M

e
a

s
u

re

Number of Clusters and Support

Wap:Time

MFIHC: Length 1

MFIHC: Length 2

MFIHC: Length 3

MFIHC: Length 4

FIHC: 30%

FIHC: 70%

Wap: F-Measure

0

0.1

0.2

0.3

0.4

0.5

0.6

C:5
S:1

C:5
S:2

C:5
S:3

C:10
S:1

C:10
S:2

C:10
S:3

C:20
S:1

C:20
S:2

C:20
S:3

C:40
S:1

C:40
S:2

C:40
S:3

Number of Clusters and Support

F
-M

e
a

s
u

r
e

MFIHC: Length 1

MFIHC: Length 2

MFIHC: Length 3

MFIHC: Length 4

FIHC: 30%

FIHC: 70%

Int'l Conference on Computer Science, Data Mining & Mechanical Engg. (ICCDMME’2015) April 20-21, 2015 Bangkok (Thailand)

http://dx.doi.org/10.15242/IIE.E0415066 123

dealing with large volume of data, high dimensionality and

cluster labels. Sometime they can not produce required

number of clusters. MFI-HC has improved scalability and

improved dimensionality reduction technique. MFI-HC can

produce good clustering label as well. Our experimental

evaluation shows that MFI-HC outperforms the existing
clustering techniques both in terms of efficiency and

clustering labels.

REFERENCES

[1]. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in

large databases. In: Proceedings of the 20th International Conference on

―Very Large Data Bases, VLDB‖, pages 487-499, Santiago, Chile (1994)

[2].Borgelt, C.: An Implementation of the FP-growth Algorithm. In:

Workshop ―Open Source Data Mining Software (OSDM'05, Chicago,

IL)‖, pp. 1-5, ACM Press, New York, NY, USA (2005)

[3]. M., Burdick, Calimlim, M., Gehrke, J.: MAFIA: A Maximal Frequent

Itemset Algorithm for Transactional Databases. In: Proceedings of the

17th BIBLIOGRAPHY 63 International Conference on ―Data

Engineering‖, pages 443-452, Heidelberg, Germany (2001)

[4]. Hartigan, J. A., Wong, M. A.: Algorithm AS 136: A K-Means Clustering

Algorithm. In: Journal of the Royal Statistical Society. Series C (Applied

Statistics), Vol. 28, pp. 100-108, Royal Statistical Society (1979)

[5]. Bradley, P. S., Mangasarian, O. L., Street, W. N.: Clustering via Concave

Minimization. In : Journal of Advances in Neural Information Processing

Systems, Vol. 9, pp.368-374,MIT Press (1997)

[6]. Ng, R., Han, J.: Efficient and effective clustering method for spatial data

mining. In: Proc. of the 20th Conference on ―VLDB‖, pages 144–155,

Santiago, Chile (1994)

[7]. AbdelHamid, N. M., Halim, M. B. A., Fakhr, M. W.: Bees Algorithm-

Based Document Clustering. In: The 6th International Conference on

―Information Technology‖, College of Computing and Information

Technology, Cairo, Egypt, 246-254, (2013)

[8].Sasirekha, K., Baby, P.: Agglomerative Hierarchical Clustering

Algorithm- A Review Similarity Measures. In: International Journal of

Scientific and Research Publications, 3, pp. 1515-1518, (2013)

[9]. Guha, S., Rastogi, R., Shim, K.: ROCK: A Robust Clustering Algorithm

for Categorical Attributes. In: Proceeding of 15th International

Conference on ―Data Engineering‖, IEEE CS Press, Los Alamitos, Calif,

pp. 512-521, (1999)

[10] Karypis, G., Han, E., Kumar, V.: Chameleon: Hierarchical Clustering

Using Dynamic Modeling. In: IEEE Computer, Special Issue on Data

Analysis and Mining, vol.32, pp. 68-75, (1999)

[11] Beil, F., Ester, M., Xu, X.: Frequent Term-Based Text Clustering. In:

Proceedings of the eighth ACM SIGKDD international conference ;on

―Knowledge discovery and data mining, ACM, New York , 436, (2002)

[12]. Fung, B., Wang, K., Ester, M.: Hierarchical Document Clustering Using

Frequent Itemsets. In: Proceeding of SIAM International Conference on

―Data Mining‖, SIAM, pp.59-70, (2003)

[13]. Su, C., Chen, Q., Wang, X., Meng, X.: Text Clustering Approach Based

On Maximal Frequent Term Sets. In: Proceeding of 2003 IEEE

International Conference on ―Systems, Man and Cybernetics", Harbin

Institute of Technology, Shenzhen, China, pp.1551-1556, (2009)

[14] Index of /torch/datasets, http://sites.labic.icmc.usp.br/torch/datasets/,(18

Nov, 2014)

[15].FIHC 1.0, http://ddm.cs.sfu.ca/, (18 Nov, 2014)

Int'l Conference on Computer Science, Data Mining & Mechanical Engg. (ICCDMME’2015) April 20-21, 2015 Bangkok (Thailand)

http://dx.doi.org/10.15242/IIE.E0415066 124

http://sites.labic.icmc.usp.br/torch/datasets/
http://ddm.cs.sfu.ca/

