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Abstract— Text document clustering is an important issue in the 

field of information retrieval and web mining. Huge amount of text 
documents are needed to be clustered so that search engines can 

retrieve these documents efficiently and effectively. In this paper we 
present a novel approach for clustering text documents based on 
Maximal Frequent Item-set (MFI). Our proposed MFI-HC (Maximal 
Frequent Item-Set - Hierarchical Clustering) algorithm uses 
minimum k size MFIs to form initial sub-clusters. We use 
agglomerative hierarchical approach to merge the sub-clusters on the 
basis of highest similarity. Our proposed technique helps in reducing 
dimensions of the text and provides better clustering quality.  
 

Keywords— Clustering, Hierarchical, Maximal Frequent Item-

set. 

I. INTRODUCTION  

UE to large corpus of text documents, we are normally 

facing problem of scalability in information retrieval. 

Besides scalability, the high dimensional nature of text 

documents create problem in clustering process as well. To 

retrieve the clusters easily, we need to tag them with relevant 

cluster labels, which is not possible in the case of high 

dimensional data. All these mentioned problems lead to the 

poor performance of information retrieval systems both in 

term of time and precision.  
Today’s web search engines have low precision as far as 

text document searching is concerned. When a user wants to 

retrieve some information, many irrelevant text documents are 

also retrieved. The challenges to confront include: retrieval of 

most relevant text documents, reducing high dimensionality 

of text documents and providing comprehensible description 

of text documents. 

There is a room for improvement in current text document 

clustering system. Addressing the above mentioned problems, 

we present a novel approach to provide better quality clusters. 

Clustering is a technique to automatically group similar items. 
Clustering aims at lower inter-cluster similarity and higher 

intra-cluster similarity. I.e. all the clusters should be different 

from on another while the items of a single cluster should be 

similar. Frequent Item-set (FI) is a technique which is used to 

retrieve some frequent combination of terms present in text 

documents. Apriori is a well known FI extracting algorithm. 

Starting from 1 size Item-sets, Apriori works in k-steps. At 

each step k, it generates k-size Item-sets until the frequency of  
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Item-sets at a particular step is lower than the threshold value 

[1]. FP-Growth is another FI extracting algorithm. FP-Growth 

works in a divide-conquer approach using FP-tree. The 

efficiency of FP-Growth is relatively very fast as compare to 

Apriori because FP-Growth reduces the size of dataset to be 

searched [2]. An FI will be known as MFI if there exists no 

super Item-set of that particular FI [3]. MFI is the compressed 

form of FIs and is the basis of our algorithm.  

Partitioning, graph-based and Frequent Pattern based 
clustering are some of the techniques used for document 

clustering.  

In partitioning method, the algorithm divides the dataset 

into desired number of non-overlapping groups. Each item is 

assigned to only one group. Some of the partitioning 

algorithms are k-means [4], variants of k-means like k-

medians [5] and CLARANS [6]. Both k-means and CLARAN 

groups the data items based on higher similarity but k-means 

tries to minimize sum of squared differences while CLARAN 

tries to minimize cost of node with their respective medoids. 

Graphical approach constructs graph containing text 

documents as vertices. Every two vertices are connected with 
edges and edges are assigned weights. Edges’ weights are 

used to calculate the similarity between two documents [7]. 

Most of the graphical approaches use Hierarchical or tree 

based methods. Hierarchical method may either be 

agglomerative or divisive [8]. ROCK [9] and CHAMELEON 

[10] are the most popular hierarchical clustering algorithms. 

ROCK is an agglomerative hierarchical clustering algorithm. 

ROCK constructs a sparse graph of the data and then merges 

the clusters on the basis of aggregate inter-connectivity. 

CHAMELEON is another agglomerative clustering algorithm. 

CHAMELEON first divides the data into sub-clusters and 
then merges the sub-clusters on the basis of Relative Inter-

Connectivity (RI) and Relative Closeness (RC).  

Another approach is Frequent Pattern based clustering. In 

this approach clusters are created using FI extracted from any 

suitable FI discovery algorithm. Each cluster is assigned an FI 

as cluster label and all the supporting documents are assigned 

to that particular cluster. Frequent Pattern based clustering 

helps in reducing dimensionality of text documents and it 

provides understandable cluster label as well. FTC [11], 

HFTC [11], FIHC [12] and MFTCS [13] are some of the 

frequent item-set based text documents clustering algorithm. 

The detailed explanation of these algorithms is given in the 
section of related work.   

The outline of our paper is as following. Section 2 of the 

paper briefly explains some well known related algorithms in 

detail. Section 3 presents our proposed framework, proposed 

algorithm and a solved example. Section 4 presents our 

experimental evaluation.  
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II. RELATED WORK 

Many researchers have presented different algorithms in 
literature. Hierarchical and Partitioning methods are the most 

commonly used approaches. Normally partitioning algorithms 

are based on some variants of Vector Space Model (VSM). 

VSM is based on words frequency and thus it is extremely 

affected by the high dimensionality of the text documents. 

These algorithms can not deal with high dimensional text 

documents especially in very large databases. To avoid this 

problem of high dimensionality of partitioning algorithms; 

many researchers used hierarchical approach in combination 

with Frequent Pattern based techniques. Frequent-Pattern-

based algorithms help in reducing dimensionality of the text 

and are very efficient as compare to partitioning and 
hierarchical algorithms. Some of these algorithms are 

discussed here.  

F. Beil et al presented two algorithms named as Frequent 

Term Clustering (FTC) and Hierarchical Frequent Term 

Clustering (HFTC). FTC is a flat clustering algorithm while 

HFTC is a hierarchical clustering algorithm. For the creation 

of clusters they used Apriori algorithm. FTC and HFTC used 

a greedy search approach to merge the cluster with maximum 

overlap. One of the draw back of FTC algorithm is that it only 

considers overlap of clusters. Moreover the greedy search 

approach can not guarantee optimum clustering system. [11].  
FIHC [Frequent Item-Set Hierarchical Clustering] works in 

four phases. In first phase, initial Clusters are created using 

FIs extracted using Apriori algorithm. In second phase 

clusters are made disjoint by assigning the documents to the 

best cluster using a similarity score. In third and forth phases 

Parent-Child pruning and sibling merging are. FIHC is very 

slow for a small threshold value, and also small threshold 

value is required for higher precision. It is a big problem to 

balance between scalability and precision [12]. 

C. Su et al presented MFTSC (Maximal Frequent Term Set 

Clustering) algorithm. MFTCS extracts MFIs using FP-

Growth [2] algorithm and then it merges these MFIs on the 
basis of a k-mismatch function. K-mismatch means that 

MFTCS will merges the cluster if the number of mismatch 

items between the clusters are less than k. K is a user 

specified integer value. To decrease the redundancy, clusters 

are merged based on an overlap function. After this some 

documents remain uncovered. Uncovered documents are 

assigned to the cluster of highest similarity with that 

particular document. The value K value may results in best or 

worst result depending on the nature of dataset. Moreover 

MFTSC is failed to provide disjoint clusters. The k-mismatch 

function is also a form of overlap so MFTCS uses overlap on 
different stages without considering any other issue [13].  

All the algorithms were good attempts but still there are 

some common problems that remain unsolved. For higher 

support values, these algorithms return low quality clusters 

but improved run time while low support value returns good 

quality cluster but takes a lot of time for larger datasets.  

For low support, FIs discovery algorithms return a very 

large number of small size FIs or MFIs that ultimately leads 

to the slow performance of algorithm and increases the run 

time at a very high rate. Reason behind the slow run time is 

that larger amount of FIs or MFIs need a larger amount of 

merging cycles. Thus we need to reduce the number of MFIs 

to get optimum results.  

Another problem is that most often these small sizes FI or 

MFIs take several cycles to merge smaller FIs or MFIs to 

their final MFIs while merging sub-clusters to the most 

similar clusters again and again. We need to merge each sub-
cluster to its most final destination without passing through 

unnecessary cycles.     

  
III. PROPOSED FRAME WORK 

The algorithm we propose is based on an agglomerative 

hierarchical approach that helps in reducing dimensionality 

and improving efficiency. Our algorithm helps to avoid 

repeating unnecessary merging cycles as it eliminates small 
size MFIs and quickly merges sub-clusters to their final 

clusters. Small size MFIs are eliminated by giving an extra 

parameter to the FP-Growth algorithm that is the minimum 

size of MFI. Produced MFIs are used for the creation of sub-

clusters and the labels of that particular cluster. The use of 

MFIs instead of FIs improves effectiveness and accuracy at an 

amazingly rate and the elimination of small size MFIs adds 

further improvement. The main phases of the proposed 

algorithm can be expressed by the following diagram.  

; 

 
 

Fig. 1. System Architecture 
 

To implement our algorithm, we have used Classic4, 

Reuter8 and Wap datasets downloaded from [14]. 

Preprocessing steps include stop-words removing and 

stemming. Moreover terms are replaced with their respective 

terms IDs and documents are converted to transactional form. 
After performing these necessary preprocessing steps, MFIs 

based sub-clusters are created and then similar sub-clusters 

are merged to create final clusters.  

Algorithm: 

Procedure MFI-HC ( ) 

Input: D, k, Min_Sup. 

Output: Clusters 

Method: 

1. MFI=FP-Growth(D, k, Min_Sup); 

2. C=Assign_Docs(Dk, MFI);  

3. for n Num_Of_Clusters 
for each Cluster Ci € C  

      Loc_Max_Sim= Sim(Ci, G); 

Merge(Ci, C Loc_Max_Sim); 
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Remove Ci, C Loc_Max_Sim; 

end 

end 

4. return Cluster; 

D is a set of transactions that we have already created. FP-

Growth is an MFI discovery algorithm that takes a set of 
transaction as input. MFIs of min-size k are extracted for a 

specific support value. Based on these extracted MFIs, sub-

clusters are created and the terms present in MFIs are 

considered as the labels of the clusters. For the creation of 

initial sub-clusters and for merging of similar clusters, we 

need a scoring function for the purpose of identifying the best 

cluster. The scoring function we used is based on the overlap 

between two patterns. The overlap may exist between two 

cluster points or between document and a cluster point. Our            

scoring function is basically the sum of intersection of two 

sets and the percentage of the size of set for which we are 

going to compute the merging score. The purpose of adding 
size factor is because we want to merge the cluster with the 

most similar and largest cluster to avoid extra cycles of 

merging.  

The following scoring function is used for finding the best 

match for a document.  

     (    )            * 
             

   
+ 

 

In the above function, Di represents a document i and Cj 

represents a sub-cluster j. Here | Di  ∩ Cj| represents the 

cardinality of the intersection between Di , Cj and |Cj | 

represents the cardinality of set j. The score of Di will be 

calculated against a number of sub-clusters say Cj where Cj € 

C. The function allots highest score to the sub-clusters that 

have highest overlap and is the largest in size. The same 
procedure will be performed for merging of clusters, but 

instead of comparing documents Di with clusters, cluster to 

cluster comparison will be performed. For merging of cluster 

we will use the above scoring function with a slight change.  

 
 

Fig. 2 Creating Disjoint Sub-Clusters 
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Suppose we have a document-set consisting of 7 documents. 

After performing necessary preprocessing steps, we got the 

following transaction-set and their respective MFIs. 
 

TABLE I 

 TRANSACTION_SET 

 
 

For min-size=4, FP-Growth algorithm will delete all the 

MFIs of size 1, 2 and 3. For above set of transactions min-

size=0, 1, 2, 3 returns the same set of MFIs because the above 

transactions have no MFI of size 1 or 2. To explain the 

algorithm, we select min-size=3 and the complete procedure 

of assigning the documents to the relevant clusters is shown in 

Fig 2.  

The nodes at the left side of the graph represent documents 
and the nodes at the right side of the graph represent sub-

clusters. For each document, the scoring values are calculated 

against each sub-cluster and then the document is assigned to 

the cluster of highest score value. The scoring value of Doc_0 

for all the sub-clusters are computed and are given in the first 

node of the graph as below. To assign the documents D0 to 

the most suitable sub-cluster, the similarity score is calculated 

as following.   

     (     )   
               (     )      

   
+ 

= 1+4/100  

=1.04 

Here Score(M0 D0) represents the score of assigning 

document_0 to MFI_0, D0 represents the first document and 

M0 represents the first MFI. | Intersection (D0, M1) | 

represents the number of items that are common to both D0 
and M0. |M0| represents the number of items in M0. Here 

1.04 is the calculated Score(D0M1), 0 is Score(D0M1) 

and 5.05 is Score(D0M2) etc. D0 will be merged with sub-

cluster M2 as D0 has highest score for M2. Above procedure 

is repeated until all the documents are assigned to any of the 

sub-cluster and we get the following sub-clusters. 
 

TABLE II 

ASSIGNED DOCUMENTS 

MFI_Set Terms_ID Documents 

M0 1, 7, 8, 9 D6 

M1 6, 8, 9 D5 

M2 1, 2, 3, 4, 5 D0, D1, D2 

M3 1, 3, 4, 5 Deleted 

M4 6, 7, 8 D4 

M5 5, 6, 7 D3 
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Fig. 2 Creating Disjoint Sub-Clusters 

 

Nodes at the left side of the above graph represents sub-

clusters and the nodes at right side represents final clusters 

that are been produced after merging. To merge the sub-

cluster M0, the scores of M0 with all the rest of the MFIs are 

calculated and are presented in the first node of the graph at 
left.  

     (     )   
               (     )      

   
+ 

= 2+3/100= 2.03  
Sub-cluster M0 has highest scoring value for M1, so M0 is 

merged with M1. Thus we get two final clusters that are been 

shown at the right side of the graph with the documents and 

their respective cluster labels. We used an agglomerative 

hierarchical clustering approach for the clustering and the 

overall clustering process using agglomerative hierarchical 

approach is given.  

 
Fig. 4 Agglomerative Hierarchical Approach 

 

IV. RESULTS AND EVALUATION 

In this section we evaluate the performance of our proposed 

framework based on different min-size of MFIs. For the same 

dataset we executed FIHC based on similar support values. 

FIHC is based on hierarchical approach and also using FIs for 

clustering. We executed our program on Window 7 with core 
2 duo 1.33 GHz CPU and 2 GB memory.  We obtained the 

FIHC 1.0 from the [15].  

F-measure is the most commonly used evaluation measure. 

Good clustering algorithm aims to capture larger number of 

documents from a natural class. F-Measure is based on recall 

and precision [12]. Precision is the term representing all 

correctly captured documents while recall is the term 

representing all the captured documents regardless of 

accuracy. The recall, precision and F-Measure will be 

calculated as follows: 

      (         )   
   
    

 

 

         (         )   
   
    

 

 

 (      )   
        (         )           (         )

      (         )           (         )
 

Where K is the natural class of dataset and j is the cluster. 

nij is the number of documents of class Ki that are present in 
cluster Cj. |Ki| is the number of documents in class i and |Cj| is 

the number of documents in cluster j. The weighted sum of 

maximum F values for all the natural classes is known as F of 

clustering result.  

 ( )   ∑
|   | 

   
        * (      )+

   

 

We used the most commonly used datasets e.g. Classic4, 

Reuters8 and Wap. All the used datasets are collection of 

English text documents and contains different number of 

natural clusters.  The following table shows a short summary 

of these datasets.  
TABLE III 

DATASET 

Dataset   # Docs #  of Classes 

Wap 3900 21 

Classic 7095 4 

Reuter 7674 8 

 

The F-Measure and run time comparison of the above 

datasets based on different parameters are shown in detail. For 

MFI-HC we used min-size=1, 2, 3 and 4 and for FIHC we 
used 30% and 40% support. The number of clusters for both 

algorithms remains same. The produced results are shown 

below. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

D0 D1 D2 D3 D4 D5 D6 

M1 M0 M4 M5 M2 

M2, M5 M0, M1, M4 D0, D1, D2, D3 D4, D5, D6 
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TABLE IV 

F-MEASURE AND TIME OF CLASSIC4 DATASET 

Cluster Sup  F-Measure Time 

MFIHC FIHC MFIHC FIHC 

1 2 3 4 30% 70% 1 2 3 4 30% 70% 

5 1 0.44 0.53 0.54 0.45 0.59 0.44 452 325 93 12 304 305 

 2 0.44 0.46 0.27 0.45 0.52 0.42 70 35 2 1 64 58 

 3 0.55 0.23 0.0 0.45 0.60 0.53 24 9 1 0 21 21 

10 1 0.56 0.50 0.56 0.45 0.55 0.41 432 334 94 12 335 285 

 2 0.44 0.42 0.24 0.45 0.49  0.40 69 35 2 1 69 66 

 3 0.59 0.23 0.0 0.45 0.58 0.48 24 9 1 0.5 24 21 

20 1 0.45 0.51 0.53 0.45 0.51 0.41 447 321 89 12 319 273 

 2 0.44 0.42 0.24 0.45 0.46 0.40 69 35 2 1 78 64 

 3 0.53 0.23 0.0 0.45 0.46 0.40 24 9 1 0.5 63 56 

40 1 0.47 0.47 0.52 0.45 0.47 0.38 321 90 89 12 352 315 

 2 0.44 0.42 0.24 0.45 0.45 0.37 69 35 2 1 71 58 

 3 0.53 0.23 0.0 0.51 0.42 0.36 21 9 1 0.5 21 6 

 

TABLE V 

F-MEASURE AND TIME OF REUTER8 DATASET 

Cluster Sup  F-Measure Time 

MFIHC FIHC MFIHC FIHC 

1 2 3 4 30% 70% 1 2 3 4 30% 70% 

5 1 0.51 0.51 0.50 0.49 0.70 0.54 1090 2359 2187 1784 1075 2419 

 2 0.50 0.50 0.62 0.49 0.66 0.67 368 367 336 244 163 151 

 3 0.49 0.58 0.61 0.51 0.71 0.66 128 127 106 67 62 60 

10 1 0.51 0.50 0.57 0.49 0.65 0.54 2377 2396 2213 1774 997 974 

 2 0.50 0.45 0.61 0.49 0.68 0.70 369 364 325 219 153 150 

 3 0.48 0.54 0.61 0.51 0.69 0.53 128 127 106 66 62 59 

20 1 0.51 0.51 0.69 0.49 0.65 0.57 2366 2410 2266 1842 998 972 

 2 0.49 0.45 0.61 0.60 0.68 0.63 369 364 323 219 153 153 

 3 0.60 0.64 0.56 0.51 0.69 0.52 128 127 104 65 62 59 

40 1 0.51 0.49 0.70 0.47 0.65 0.60 2358 2422 2247 1791 994 970 

 2 0.47 0.49 0.65 0.60 0.68 0.68 367 360 320 217 153 147 

 3 0.60 0.65 0.50 0.29 0.65 0.52 127 131 109 67 63 59 

 

TABLE VI 

F-MEASURE AND TIME OF WAP DATASET 

Cluster Sup  F-Measure Time 

MFIHC FIHC MFIHC FIHC 

1 2 3 4 30% 70% 1 2 3 4 30% 70% 

5 1 0.38 0.38 0.38 0.29   X   X 175 165 164 165   x    x  

 2 0.38 0.38 0.38 0.29   X   X 34 32 32 32   x    x  

 3 0.38 0.38 0.38 0.29 0.44 0.36 12 11 12 12 390 370 

10 1 0.38 0.38 0.38 0.29   x    x  175 166 168 165   x    x  

 2 0.38 0.38 0.38 0.29   x    x  33 31 31 31   x    x  

 3 0.38 0.38 0.38 0.38 0.53 0.43 12 12 11 12 394 397 

20 1 0.38 0.38 0.38 0.29   x    x  174 172 167 166   x    x  

 2 0.38 0.38 0.38 0.29   X   x  34 33 32 32   x    x  

 3 0.38 0.38 0.38 0.38 0.56 0.43 12 12 12 11 425 374 

40 1 0.38 0.38 0.38 0.29   x    x  172 166 161 161   x    x  

 2 0.38 0.38 0.38 0.29   x    x  33 31 32 31   x   x  

 3 0.38 0.38 0.38 0.29 0.50 0.42 12 11 11 11 410 392 

The above results are expressed graphically to give a clear picture.  

 

Int'l Conference on Computer Science, Data Mining & Mechanical Engg. (ICCDMME’2015) April 20-21, 2015 Bangkok (Thailand)

http://dx.doi.org/10.15242/IIE.E0415066 122



 
Fig. 5. F-Measures and Time of classic4 dataset 

 

 

 

 

 

 

 

 

 

 
Fig. 6. F-Measures and Time of Reuter8 dataset 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7 F-Measures and Time of Reuter8 dataset

From the above results we can easily realize that MFI-HC 

is more efficient as compare to FIHC. For classic and wap 

MFI-HC have a prominent improvement in run time of the 

clustering algorithms. For Reuter8, FIHC is more efficient 

than FIHC but it can give efficient result if we increase the 

support. For wap dataset both in MFI-HC and FIHC, if we 

select a very small support then it takes very huge amount of 

memory, slows down the system and is unable to perform 
clustering.  

For the cluster quality i.e. F-Measure, FIHC has different 

trends over different parameters. FIHC produce good F-

Measure for smaller cluster support but is not efficient, while 

larger cluster support can produce good F-Measure but is not 

very efficient. From the results of classic dataset we can see 

that for 70% cluster support FIHC has a better clustering 

quality but is not efficient and for 30% cluster support MFI-

HC outperforms FIHC both in terms of run time and F-

Measure. For the above set of parameters MFI-HC could not 

produce good F-Measure while FIHC has produced relatively 
good clustering quality.  From the F-Measures produced by 

MFI-HC, we can see that for some set of parameters we get 

very small F-Measure i.e. below 0.30, the reason behind this 

decrease of F-Measure is that the number of required clusters 

is less than the number of produced MFI’s. Thus algorithm 

fails to merge similar clusters.  

In short, we can say that using different parameters, both 

MFI-HC and FIHC has different impact on run time and 

quality. For MFI-HC if we select larger size of MFIs then the 
algorithm produce good quality both in terms of rum time and 

cluster quality. And FIHC can produce good quality for very 

lower support but is very slow.  

The nature of dataset is no doubt a very important factor for 

any clustering algorithm. No single algorithm can produce 

perfect results for all types for environment and same is the 

case with MFI-HC.  

V. CONCLUSION 

Most of the existing text clustering approaches does not 

assure the needs of clustering system. They are not capable of 
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dealing with large volume of data, high dimensionality and 

cluster labels. Sometime they can not produce required 

number of clusters. MFI-HC has improved scalability and 

improved dimensionality reduction technique. MFI-HC can 

produce good clustering label as well. Our experimental 

evaluation shows that MFI-HC outperforms the existing 
clustering techniques both in terms of efficiency and 

clustering labels.   
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