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Abstract—This paper presents an efficient uncertainty 

quantification (UQ) method based on in-expensive Monte Carlo 

(IMC) method to reduce the statistical parameters of objective 

function (e.g. Cd) subject to aerodynamic and geometric constraints. 

The robustness of a candidate design is evaluated by IMC approach 

with kriging surrogate model for estimating statistics and probability 

density functions of output response quantities. An in-house code, 

PMNS2D, is used for CFD calculations of transonic flows over 

RAE2822 airfoil. Input parameters such as free stream Mach number 

and angle of attack are varied and the propagation of their 

corresponding aleatory uncertainties on output properties of interest 

is studied. The drag coefficient of the robust airfoil is insensitive to 

variations of uncertain parameter. and reduction in objective function 

is 35.8% and 35.3% for Mach and alpha uncertainty respectively. The 

small fluctuations in Cd over uncertainty range means that the 

performance of robust design is insensitive to uncertain operating 

conditions. 

 

Keywords—Robust aerodynamic design, Inexpensive Monte 

Carlo, Uncertainty Quantification, Surrogate Model, Airfoil design.  

I. INTRODUCTION 

RADITIONALLY aerodynamic design optimization (ADO) 

is formulated as a deterministic optimization problem at 

the given operating conditions. Practically, aircraft cannot 

operate exactly at the certain conditions. The operating 

conditions, such as angle of attack, Mach number, and 

Reynolds number may fluctuate during flight. These 

parameters are treated as constant value in conventional 

design. Such type of uncertain design parameters are 

inevitable in ADO and must be considered to produce reliable 

optimal solution (high performance and low sensitivity). In 

last two decades, various non-deterministic methods have 

been developed to cater uncertainty i.e., reliability based 

method and robust design method. Taguchi [1] developed the 

foundation of robust design in 1950's and applied his methods 

in electronics & automotive products. The Taguchi robust 

design method aims to look for a solution with better mean 
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performance and less variance. Reference [2] provides the 

detailed review of robust optimal design for Taguchi method. 

In aerodynamic design, the research on robust design 

optimization (RDO) can find its origin from the multi-point 

aerodynamic optimization. A simplified version of airfoil 

problem was studied in 1977 [3] where it was observed that 
single point optimization (SPO) perform well at one design 

point but have poor off-design characteristics. To overcome 

this issue, Drela proposed multi-point optimization method [4] 

for drag minimization of an airfoil. The shortcomings of 

multi-point optimization were discussed in [5] and robust 

optimization method was proposed for airfoil optimization [6]. 

A maximum expected value (MEV) criteria based on Von 

Neumann decision theory [7] was utilized to formulate the 

robust design [8] but MEV only considered the minimization 

of the mean value of objective function and didn't address the 

variability. A second criterion of minimizing the variance was 

coupled with MEV to formulate the robust design. Now, 

robust design is extensively being used in aerodynamics. The 

ADO under uncertainty can be considered as a robust design 

optimization in which solution is sought that is relatively 

insensitive to small changes in uncertain quantities. The main 

objective of RDO is to optimize the mean performance while 

minimizing the variation caused by various uncertainties.  

Uncertainty is ubiquitous in aerodynamic design. The needs 

and opportunities for uncertainty based design for aerospace 

vehicles were given in [9]. Oberkampf [10] defined 

Uncertainty as "potential deficiency in any phase or activity of 

modeling process that is due to lack of knowledge". Two types 

of input uncertainty can be considered in RDO studies i.e., 

inherent (aleatory) uncertainty and model-form (epistemic) 

uncertainty. Aleatory uncertainty, being probabilistic and 

irreducible, describes the inherent variability of the physical 

system and arises due to natural and unpredictable variations 

in operating conditions). Epistemic uncertainty is reducible 

and described as unavailability or lack of information in any 

phase of design process. In uncertainty quantification (UQ), 

probability theory is mostly used to cater input aleatory 

uncertainty, which often can be well represented by 

probability density function with sufficient information on the 

type of distribution such as normal and uniform. UQ analysis 

has got keen interest in these days [11][12]. Different methods 

are available for uncertainty propagation. The most straight 

forward and accurate method is a full nonlinear Monte Carlo 

(MC) simulation, but it is prohibitively expensive for high-

fidelity CFD computations. Another method to assess 
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uncertainty is moment method [12], [13] based on Taylor 

series expansion. An alternate approach for uncertainty 

propagation is the use of surrogate with Monte Carlo 

simulation. The surrogate models are used to replace 

expensive high-fidelity CFD simulations with an analytical 

model which is constructed through selective sampling of the 

high-fidelity model. A Monte Carlo efficiently used with 

surrogate model, is often referred to as inexpensive Monte 

Carlo (IMC) simulation approach. Its estimated function 

values can be used for MC simulation to obtain not only mean 

and standard deviation, but also an approximate probability 

density function (PDF) of the output function. This approach 

is promising for the extension to RDO studies in aerodynamics 

[14]-[17] because of its low computational cost for uncertainty 

analysis. The construction of an accurate surrogate model is 

necessary for uncertainty propagation through IMC. The 

kriging model [18]-[26] performs well in aerospace 

engineering and predicts the function value by using stochastic 

processes, and has flexibility to represent 

multimodal/nonlinear functions. An efficient kriging based 

optimization is established [26] and compared with RSM-

based optimization which shows that Kriging-based method 

outperforms RSM-based method both for efficiency and 

efficacy. 

In this research, kriging-based inexpensive Monte Carlo 

method is applied to a RDO problem of an airfoil using 

kriging -based optimization method developed in [26]. The 

uncertain Mach number and angle of attack are supposed to 

follow normal distribution. A low cost IMC uncertainty 

analyses on the kriging models are utilized to evaluate the 

mean and standard deviation of drag coefficient. The RDO is 

carried out using Genetic Algorithm (GA) based optimizer, 

SurroOpt. 

II. UNCERTAINTY QUANTIFICATION METHOD 

Uncertainty quantification is a major task in RDO which is 

used to characterize the uncertainty of the output, when the 

input uncertainties are given. The goal of UQ is to determine 

how random variation (aleatory) affects the sensitivity, 

performance, or reliability of the system that is being modeled. 

Among different uncertainty propagation methods, Monte 

Carlo simulation (MCS) and inexpensive Monte Carlo (IMC) 

methods are described briefly in this section.  

a. Monte Carlo Simulation (MC)  

Monte Carlo simulation method [27] has been extensively 

used in uncertainty analysis since 1940s. The probability 

distribution of the output of a process induced by the 

probability distribution of stochastic inputs is obtained by 

performing N repetitions of the process. For an uncertainty 

analysis, main goal is to obtain the mean and variance of the 

function f with respect to the random variable x . The first 

two statistical moments are as under. 

( ) ( ) ( ),  (1)f f x p x d x



 

2 2( ( ) ) ( ) ( ), (2)f ff x p x d x 



   

where  and p are the range and PDF of the random variable 

x .Taking N sample points for x  by following the distribution 

of p , the mean and standard deviation of f can be estimated 

by MC simulation as follows. 
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 Equations (3) and (4) can be used for random samples, N 

which follow any type of distribution i.e., uniform or normal. 

The PDF of f can be predicted by ( )if x . The standard 

deviation of the predicted mean from its exact value is
1 2( )O M  . Although, it is the most popular method but it 

requires large number of CFD performance evaluations for 

obtaining accurate results. Due to which its computational cost 

is very large especially with the increase in the number of 

random variables.  

B. Inexpensive Monte Carlo Based on Surrogate Model  

The concept of the IMC is similar to that of MC simulation. 

However, the huge numbers of exact CFD evaluations are 

replaced by a cheaper surrogate model. The most appropriate 

choice among various surrogate model is kriging which is a 

statistical interpolation method proposed by Krige in 1951. 

Kriging was widely used in geo-statistical problems and it was 

extended by Sacks [18] for the design and analysis of 

deterministic computer experiments. In this work, kriging 

model(s) are built to quantify the uncertainly of each candidate 

airfoil, with uncertain flow condition parameters (such as 

Mach number and angle of attack) as variables. These 

surrogate models are further used in MC simulation method to 

estimate the mean and standard deviation of aerodynamic 

functions. The process of uncertainty quantification is shown 

in Fig. 1. 

 
Fig. 1. Procedure of uncertainty quantification for a candidate     

airfoil using IMC 
 

The reference [26] provides the detailed description of 

kriging model used in this research. Additional samples are 

used to verify the accuracy of kriging surrogate. Here two 

standard performance metrics are used to evaluate the 
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performance 1) Root mean square error (RMSE), 2) Maximum 

absolute error (MAE). They are represented as follows. 

2

1

1
(( ( ) ( ))     (5)

tn

k k

t k

RMSE f x f x
n



   

max | ( ( ) ( ) |     (6)k k

k
MAE f x f x    

where ( )kf x is the exact function value for test point kx , 

( )kf x  corresponding estimated function value and tn  is the 

total number of test points. Seventy samples have been 

selected as test points and 3, 5, 10, 15, 20, and 25 are taken as 

training points. The surrogate model attained the desired 

accuracy by selecting 20 samples of uncertain parameter. 

 

 

III. COMPUTATIONAL FLUID DYNAMIC MODEL 

a. Airfoil Geometry 

The airfoil geometry for single point deterministic problem 

and robust design problem is selected as supercritical 

transonic airfoil RAE2822. The geometry of the RAE 2822 

airfoil is described by the design airfoil coordinates [28] with 

a maximum thickness–to–chord ratio (t/c) of 0.1214. 

B. Grid Generation 

Computational grid for an airfoil is generated using in-

house code called ―Foilgrid”. The domain boundaries are 

placed at distance of 18 chord length around the airfoil. The 

computational meshes are of structured curvilinear body fitted 

C-topology with elements clustering around the airfoil. The 

RAE2822 airfoil is designed for a free stream Mach number, 

M∞ = 0.66 and lift coefficient, Cl = 0.56 at angle of attack, α = 

1.06º. The off–design nominal flow conditions considered in 

this study corresponds to free stream Mach number, M∞ = 

0.73, angle of attack, α= 2.79º, and Reynolds number, Re = 

6.5×10
6
. A mesh for RAE2822 airfoil is shown in Fig. 2. A 

grid with 20,865 mesh cells is used for robust airfoil 

optimization.  

C. Flow Solver 

The flow analyses are performed with in-house code, called 

―PMNS2D”. It solves the Reynolds-Averaged Navier-Stokes 

(RANS) equations to simulate the flow around the airfoil. The 

equations are solved on structured meshes using the cell -

centered finite-volume approach. The Spalart-Allmaras one-

equation turbulence model is used for turbulence closure. The 

second-order Jameson’s central scheme is used as spatial 

scheme. Implicit residual smoothing, local time-stepping and 

multi-grid techniques are used to accelerate the solution to 

converge to the steady state. The pressure coefficient (Cp) 

comparison with experimental data shown in Fig. 3 depicts that 

grid as well as flow solver is capable to capture flow 

phenomenon and can be used for aerodynamic optimization. 

 

 

Fig. 2. Computational grid for RAE 2822( 20,865 cells) 

 

Fig. 3. Cp comparison at M∞ =0.73 and α=2.79º 

IV. SURROGATE BASED OPTIMIZATION  

An efficient surrogate-based optimization toolbox called  

―SurroOpt” which can solve any single objective and/or, 

multi-objective optimization problems is used in this research. 

The SurroOpt code includes several types of design of 

experimental (DoE) methods such as Latin hypercube 

sampling   (LHS) [29], uniform design (UD) [30] etc; 

surrogate models such as quadratic response surface, kriging 

models (its variants such as gradient enhanced kriging, and 

radial-basis functions, etc; and traditional optimizers such as 

genetic algorithm (GA), BFGS, SQP, pattern search etc. In 

this research, the LHS, kriging model, and GA are used 

respectively.  Two cases are addressed in this section 1) 

Deterministic single point optimization, 2) In-deterministic 

RDO under aleatory uncertainty of Mach number or angle of 

attack. The airfoil is parameterized by Class/Shape 

transformation function (CST) [31] for both cases. The 

RAE2822 is selected as the baseline airfoil. Design space is 

chosen within ±25% of baseline airfoil with 14 design 

variables on airfoil as shown in Fig. 4. Two cases are 

described as follows.   
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Fig. 4. Baseline airfoil with ±25% upper and lower bounds 

a. Case 1: Deterministic Single Point Optimization  

In this case, deterministic single point optimization is 

performed for drag minimization of RAE2822 airfoil subject 

to aerodynamic and geometric constraints. The optimization 

has been carried out at Mach number, M∞=0.73, angle of 

attack, α=2.79º and Reynolds number, Re = 6.5×10
6
 using 

SurroOpt. The problem formulation is as follows. 

0

0

:

:

                                             (6)

 | | | |,

d

l

m m

Objective function Minimize C

st Thickness Thickness

C C

C C







 

where 0 0 0, ,l mC C and Thickness  corresponds to lift coefficient,  

pitching moment and maximum thickness of baseline airfoil, 

respectively. 

Table 1 shows the results of an optimized airfoil which 

depicts that the drag reduction of an optimum airfoil is quite 

reasonable (31.67%), satisfying the required constraints. The 

comparison of optimum airfoil geometry with baseline is 

shown in Fig. 5. The Cp distribution comparison in Fig. 6  

shows that the strong shock of the baseline is dramatically 

weakened and a smooth Cp distribution is obtained for 

optimized airfoil.  

 

Fig. 5. Comparison of baseline airfoil and SPO airfoil 

 

Fig. 6. Comparison of pressure coefficient between baseline and SPO 

airfoil at M∞=0.73 and α=2.79º 

TABLE I 

COMPARISON OF SINGLE POINT OPTIMIZATION RESULTS WITH RAE2822 

 Cd                             Cl |Cm| Thickness 

RAE2822 0.01607 0.79562 0.09202 0.1214 

Optimized 0.01098 0.796 0.09184 0.12265 
% diff -31.67% +0.047% -0.195% +1.02% 

b. Case 2: Robust Design Optimization under 

Uncertainty 

The main objective of the robust design optimization under 

aleatory uncertainty is to reduce the mean and standard 

deviation of drag coefficient simultaneously to obtain the 

airfoil shape with minimum drag. Robustness can be achieved 

by minimizing the variance of Cd. In this research, Mach 

number or angle of attack are considered as uncertain 

parameters which represent normal distribution. For the robust 

airfoil optimization, two cases are presented. 1) RDO with 

Mach uncertainty; 2) RDO with an angle of attack uncertainty. 

Uncertainty is propagated through surrogate based 

inexpensive Monte Carlo simulation. Three constraints are 

imposed such as thickness, lift coefficient, and pitching 

moment coefficient. Robust design optimization was 

performed using SurroOpt. Following are the two cases which 

are discussed here. 

i. RDO with Mach-Number Uncertainty 

For Mach number uncertainty, the range of random Mach 

number sample for stochastic design space is set as -4 ≤ ξ ≤ +4 

assuming normal uncertainty with mean, µM =0.73 and 

standard deviation, σM=0.005. A distribution of random Mach 

number is given by the following relation. 

.             (7)M MM        

The robust optimization for drag minimization of airfoil 

under Mach number uncertainty is formulated as follows. 

0

0

0
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where
0 0

 and 
l mC C   represent the mean values of target lift 

coefficient, and pitching moment of baseline airfoil. The flow 
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chart for our robust optimization is shown in Fig. 7. Following 

procedure is adopted for robust airfoil optimization.  
 

Step1:Select Design of experiment (DoE) for generating      

sample points (design variables) using LHS in design 

space for parameterization of airfoil geometry.  

Step2:For each candidate shape considered during the airfoil 

shape optimization, twenty random samples are 

selected and evaluated by for CFD.; kriging model(s) 

are constructed and predicts the aerodynamic force 

coefficients on 2×10
5
 samples selected by Monte Carlo 

simulation; then the mean and variance of drag, lift and 

moment coefficients are predicted and used to drive the 

shape optimization process ( Step 2 is referred to the 

process of UQ in Fig. 1).  

Step3:Calculate the Objective function and set the constraints 

from predicted mean and variance of aerodynamic 

coefficients.  

Step4:Construct the Kriging model and optimize the objective 

function by GA using infill criterion (e. g. EI). 

Step5:Check and compare the objective function and 

constraints. If these are satisfied, optimum airfoil is 

achieved otherwise add new sample points, and repeat 

the UQ  and surrogate-based optimization process.  

 

Fig. 7 Flow chart of surrogate-based robust optimization 

The results of optimized airfoil are tabulated in table II. 

 

TABLE II 
COMPARISON OF ROBUST OPTIMIZATION RESULTS WITH RAE2822 

 µCd σCd Obj. Fun µCl Thickness 

RAE2822 0.01738 0.00227 0.01966 0.81152 0.1214 
Optimized 0.01178 0.00084 0.01262 0.81465 0.12144 

% diff -32.22% -63.1% -35.8% +0.39% +0.04% 

The mean and standard deviation values of the drag 

coefficient of robust optimized airfoil have been compared 

with the corresponding values of baseline airfoil which shows 

that there is significant reduction in mean and standard 

deviation of drag coefficient. Hence the objective function 

(Cd) of robust airfoil is reduced by significant amount of 

35.8%. The aerodynamic lift and drag coefficients obtained by 

kriging-based IMC method are shown in Fig. , which indicates 

that the drag coefficient of optimized airfoil is smaller than 

baseline and SPO airfoil and it is relatively insensitive to the 

uncertain Mach number variations. The comparison between 

aerodynamic coefficients of robust airfoil and its surrogate 

predicted value indicates that the kriging surrogate has the 

capability to accurately predict the uncertainty of the 

aerodynamic force coefficients. The comparison of RDO 

airfoil geometry with baseline and SPO airfoil is shown in Fig. 

9.  

The probability densities of Cl and Cd gives more detailed 

insight into the effect of the random parameters on the 

aerodynamic force coefficients. Fig.  presents the comparison 

of PDF of drag coefficient between robust and SPO airfoil 

which clearly indicates that variance of robust airfoil is 

reasonably reduced as compared to SPO airfoil, which shows 

the benefit of a RDO. 

 

(a) Lift Coefficient versus Mach variation 

 

(b) Drag Coefficient versus Mach variation 

Fig. 8 Comparison of Aerodynamic coefficients between RDO, 

Baseline and SPO airfoils 
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Fig. 9 Comparison of RDO airfoil geometry with Baseline and SPO 

airfoil (Mach number uncertainty) 

 

Fig. 10 Comparison of PDF of drag coefficient between robust airfoil 

and SPO airfoil (Mach number uncertainty) 

2) RDO with Angle of Attack Uncertainty 

In this case, the range of random alpha samples for 

stochastic design space is set as -4 ≤ ξ ≤ +4 assuming normal 

distribution with mean, µα =2.79º and standard deviation, 

σα=0.1. The RDO problem for drag minimization of airfoil 

under angle of attack uncertainty is formulated as follows. 

0

0

0

:

: (1)

     (2)                  (9)

                               (3) | | | |

l

m m

Cd Cd

C C

C C

Objective Function Minimize

St thickness thickness

 

 

 








 

   The optimization process is similar to RDO with Mach 

number uncertainty. The optimization results under angle of 

attack uncertainty shown in Table III. It can be found that the 

mean and standard deviation value of the drag coefficient of 

optimized airfoil is reduced up to 32.95% and 71.18% 

respectively. Hence objective function of robust airfoil is 

reduced by around 35.3%, satisfying the required constraints. 

TABLE III 

COMPARISON OF ROBUST AIRFOIL RESULTS WITH RAE2822 

   µCd                           σCd Obj. Fun µCl  Thickness 

RAE2822 0.01720 0.00113 0.01833 0.81284 0.12140 

Optimized 0.01153 0.00032 0.01186 0.81568 0.12157 

% diff -32.95% -71.18% -35.3% +0.35% +0.14% 

It is quite evident from the plot of drag coefficient in Fig.  

that for a given lift coefficient, the drag coefficient 

fluctuations of robust optimized airfoil are smaller than those 

of baseline and single-point optimized airfoil. The 

aerodynamic coefficients for robust airfoil have also been 

compared with its surrogate predicted value which shows that 

the surrogate has predicted the aerodynamic data efficiently. 

Fig. 12 depicts the comparison of RDO airfoil geometry with 

baseline and SPO airfoil. The PDF of drag coefficient of RDO 

airfoil shown in  Fig.  has also been compared with SPO 

airfoil. It is clearly indicated that the variance of drag 

coefficient of robust airfoil is reduced significantly. Fig. 14 

shows the comparison of convergence history of SPO and 

robust airfoil.  

Deterministic single point optimization as well as robust 

design optimization takes approximately 5 minutes for one 

CFD evaluation with Pentium Dual Core CPU, 2.5Ghz. For 

total number of 100 iterations, the time for complete single 

point optimization took about 8 hours.  RDO consisted of 20 

CFD computations of candidate airfoil in one iteration. So, 

total time for complete RDO under Mach number or alpha  

uncertainty took about 5 days. Although the computational 

cost of RDO under Mach number or alpha uncertainty is about 

15 times than SPO, the reduction in drag coefficient and its 

variance is significant as compare to SPO airfoil. The CFD 

evaluations for RDO were 2000 in comparison with 100 CFD 

evaluations of SPO. The cost of constructing kriging model is 

almost negligible in both cases of RDO using IMC. Similarly, 

the computational cost of RDO using surrogate based IMC 

method is much less than that of using simple MC method 

which may takes several months to perform robust 

optimization. 

 

 

(a) Lift Coefficient versus angle of attack 

 

(b) Drag Coefficient versus angle of attack 

 Fig. 11 Comparison of Aerodynamic coefficients of RDO airfoil 

with baseline and SPO airfoil 
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Fig. 12 Comparison of RDO airfoil geometry with baseline and SPO 

airfoil 

 

Fig. 13 Comparison of PDF of drag coefficient between robust  

airfoil and SPO airfoil (angle of attack uncertainty) 

 

 

Fig. 14 Convergence history of RDO airfoil (angle of attack 

uncertainty) 

V. CONCLUSION 

The aerodynamic design optimization under the uncertainty 

of free stream Mach number or angle of attack has been 

successfully applied to optimize the statistical moments of an 

RAE2822 airfoil using efficient surrogate-based uncertainty 

quantification IMC method. In both cases of Mach number 

and angle of attack uncertainty, the mean and variance of drag 

coefficient of robust airfoils are significantly reduced as 

compared to deterministic SPO method.  The drag coefficient 

of optimized airfoil is relatively insensitive to the variations of 

the input uncertainty.  In present work, the input uncertainty of 

Mach number and angle of attack were considered separately 

and the uncertain CFD output was assumed to follow the 

Gaussian (normal) distribution. In future, the combined effect 

of both uncertainties as well as geometric uncertainties will be 

incorporated. The real probability density function of the 

output of CFD code under uncertainties will be calculated 

without assuming Gaussian normal distribution. The method 

will be extended to 3D aerodynamic configuration towards 

industrial applications. 
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