



Abstract— Today, there is no one who disagrees on how

important data is in every industry especially in enterprise market.

More recently, the key point that decides the survival of a business is

the management of their big data, which is defined by the 3V‟s:

Volume, Velocity, and Variety [1]. While the rate of data generation

increases exponentially, processing that data with the limited

resources can be a burden to the both business managers and IT

managers. Therefore many researchers have already studied new

systems which can serve as an alternative resource to calculate and

process data.

Parallel hardware, such as a general-purpose GPU (GPGPU), is

one of the most well-known alternative. With them, it is possible to

process various applications, including data-intensive applications,

quickly [2]. OpenCL, in collaborated with several GPU vendors and

software organizations, has been launched by the Khronos group as

the first open standard platform for the programming of both the GPUs

and CPUs [3]. It makes the binary codes execute on various

heterogeneous processing units such as CPUs, GPUs and FPGAs

simultaneously. It also supports small clients like mobile GPUs for the

mobile world.

This paper proposes the method to optimize a machine learning

algorithm with the heterogeneous platform which uses both the CPUs

and GPUs using OpenCL. Through the experiment, we show that our

method can reduce the execution time of the k-means nearest

clustering algorithm, which is one of the most common algorithms in

the machine learning industry, up to 40%. The more data we use in our

system, the faster our results are when compared to the experiment in

the multi-core system.

Keywords—Machine Learning, k-means algorithm, OpenCL,

Heterogeneous computing

I. INTRODUCTION

ROCESSING applications and its data is becoming more

important in modern society. There are several ways to

process applications and data by using different computing

systems. For example, multi-core, many-core, or

heterogeneous-core can be used. Above all, a heterogeneous

system not only include CPUs but also GPUs or DSPs

Mingyung Song is a master‟s student with the Department of Electronics and

Computer engineering in the Hanyang University and also with Enterprise and

Partner Group in Microsoft Korea, Seoul, Republic of Korea, (e-mail :

smkyoyo@hanyang.ac.kr).

Dongweon Yoon, corresponding author, is a professor with the Department of

Electronics and Computer engineering in the Hanyang University, Seoul,

Republic of Korea. (e-mail : dwyoon@hanyang.ac.kr).

simultaneously. In this paper, we deal with a heterogeneous

computing system which typically include both multi-core

CPUs and multi-core GPUs.

OpenCL is the first open standard parallel programming

framework for this heterogeneous computing system. It is

designed to process large data sets rapidly by allowing a

programmer to control the specific hardware resources through

OpenCL language. Therefore, it can especially be useful in

processing large amounts of data very quickly.

We use OpenCL as a method to control our heterogeneous

platform including both the CPUs and the GPUs. We also use

the k-means nearest clustering algorithm for a machine

learning task as a target to optimize in this heterogeneous

architecture. The k-means nearest clustering algorithm needs

the simple iterative computation logics, therefore it is useful to

apply to any machine learning workload. Each iteration group

has the input vectors of their nearest center and the mean value

of each group, which is then used as the center for the next

iteration [4].

The k-means nearest clustering algorithm is a classical

clustering algorithm that divides a collection of vectors into k

groups. Each vector belongs to the cluster of the nearest

centroid. For the machine learning, it can be used when the

people don‟t know the target value or the label as a result of

algorithmic processing. Therefore it can be a type of

„unsupervised algorithm‟ [5].

In this paper, we implemented the k-means nearest

clustering algorithm that is optimized to increase performance

using OpenCL. Using the experiment‟s results, we can

optimize the algorithm to our heterogeneous system to obtain

the best performance. In the section 2, we introduce the

concepts of the k-means nearest clustering algorithm briefly. In

the section 3 we describe the details of our implementation of

the algorithm using OpenCL and also describe the method how

we optimized the OpenCL code with this algorithm compared

with C code. In the section 4, we present the experimental

results to validate our optimized method. At the end of this

paper, we give the conclusion in the section 5.

Optimization of a Machine Learning Algorithm

on the Heterogeneous system using OpenCL

Min Gyung Song, and Dongweon Yoon

P

Int'l Conference on Computer Science, Data Mining & Mechanical Engg. (ICCDMME’2015) April 20-21, 2015 Bangkok (Thailand)

http://dx.doi.org/10.15242/IIE.E0415070 125

mailto:smkyoyo@hanyang.ac.kr
mailto:dwyoon@hanyang.ac.kr

II. K-MEANS CLUSTERING ALGORITHM

A. Concept of the algorithm

The k-means nearest clustering algorithm is one of the

clustering algorithm as shown in the figure 1. In this figure, it

is represented that the key concept of the k-means nearest

clustering algorithm. Using this algorithm, users can make the

k clusters, which bind the most relational points.

Fig. 1 Result of working with K-means clustering algorithm

The position of all points in this figure divided by the 3

clusters. The points which have the same shape indicate that

they are in the same cluster. The cross shapes indicate the

centroid or the mean value of each cluster. It is the basic

concept of the k-means nearest clustering algorithm.

B. Processing k-means algorithm

In section B, we present how the k-means nearest clustering

algorithm processes its data roughly with 7 steps. In the figure

2, the 7 steps are described.

The first step of the k-means nearest clustering algorithm is

normalizing all the points. The experiment in this paper only

uses 2 dimensional values. If someone wants to use more

dimensions they could do with the same way. This means that

according to the range of input data in each dimension, the

influence of each dimension can be absolutely different. In

order to miniscule this effect fairly, normalization should be

conducted to make each dimension has the same influence to

the results.

In the step 2, the algorithm randomly creates k-points

initially, which are used as the initial values of each cluster‟s

centroid. In the step 3, we calculate the distances between the

centroid set from the step 2 and every single point. The step 4

assigns all the points to the nearest cluster from each point. To

update clusters more accurately, the algorithm calculates the

mean value among the points in each cluster in the step 5.

Fig. 2 The process of K-means nearest clustering algorithm

After calculating the mean value of each cluster, the values

calculated in the step 5 are used as the new centroids of the

clusters. In the last place, all the steps starting from the step 2

are repeated until there is no change of assignment.

III. OPENCL IMPLEMENTATION

Fig. 3 A code fragment of the C program

The code in the figure 3 shows a small part of a C code

implementation. It is the code fragment associated with the step

Int'l Conference on Computer Science, Data Mining & Mechanical Engg. (ICCDMME’2015) April 20-21, 2015 Bangkok (Thailand)

http://dx.doi.org/10.15242/IIE.E0415070 126

1: Normalize all of the points. All tasks in this C code is

implemented using the iteration jobs. It is converted into the

OpenCL kernel code using the data parallelism method as

shown in the figure 4.

Fig. 4 A code fragment of the OpenCL kernel program

The implementation using OpenCL can be divided in two

parts. The first part is the OpenCL C code for the CPU cores as

the host device. The OpenCL C has some extensions and

restrictions in add to fundamentally standard C (C99) [6]. The

other part is the kernel code for the GPU cores playing a role as

the compute devices.

The code fragment in the figure 4 shows the definition of

kernel function „PofNorm‟. It is the part of the kernel code

which is applied to GPU cores. This code calculates the

normalized values from the raw data only using 3 lines in

parallel without any iteration code as shown in the figure 3.

Fig. 5 The result of visualizing PofNorm kernel code

The value of „gid‟, which means the global work item size, is

set to the number of rows, as same with the number of all the

data points in our data set. The reason we only used the data

parallelism model using function „clEnqueueNDRangeKernel‟

in the host code is because it does the same jobs to every single

input points. Therefore, it is inefficient to separate the same

task into more than two parts.

The result of visualizing the figure 4 can be presented to the

figure 5. It visualizes how the kernel code processes the data to

get the normalized values simultaneously.

IV. EXPERIMENTAL RESULTS

The platform used for the performance evaluation in this

experiment consisted of an Intel i7- 4790 (3.6GHz) Quad-core

processor as the host device, an AMD Radeon R9 290 Hawaii

GPU as the compute device, and 16GB of DRAM. In this

compute device, the maximum local work item size is restricted

to 256 work items per dimension. The physical number of

compute units that the operating system can recognize on the

compute device is 40.

The GPU has 2560 streaming processors physically. The

execution time of the implementation with the OpenCL was

compared with that of one implemented in C. The results are

shown in the table 1 and the figure 6.

TABLE I

EXECUTION TIME OF THE K-MEANS CLUSTERING ALGORITHM OF C AND OPENCL

IMPLEMENTATION

In this experiments, presented in the table 1, we set the

global work item size to the row number in the input data set.

The local work item size is set to 256 which is the maximum

value of the local work item size in a dimension. The table 1

shows the execution time of the implementation using C code

compared to the implementation using OpenCL.

It shows that using C code took less time up to the point

where the input data size was 100,000 points. However, when

more than 1,000,000 points were used, the execution time for

the C implementation exceeded the time that OpenCL took to

process the input data. Same result is described as a graph in

the figure 6.

In this graph, we can see that the execution time of the

OpenCL implementation increase slowly according to

increases in the data size. However the execution time of the C

implementation increases very rapidly. As a result, the rate of

increase of the execution time for the OpenCL implementation

is remarkably lower than the rate of increase of the processing

time for the C implementation.

Int'l Conference on Computer Science, Data Mining & Mechanical Engg. (ICCDMME’2015) April 20-21, 2015 Bangkok (Thailand)

http://dx.doi.org/10.15242/IIE.E0415070 127

Fig. 6. Execution time of the k-means clustering algorithm of C and

OpenCL implementation

Fig. 7 The rate of execution time C[μs]/OpenCL[μs]

Using the same code, we conducted another experiment

using different numbers of compute units, which are presented

in the table 2.

TABLE II

EXECUTION TIME OF THE K-MEANS NEAREST CLUSTERING ALGORITHM WITH

RESPECT TO THE NUMBER OF COMPUTE UNITS WITH VARIOUS SIZE

To guarantee the accuracy of the result using the same kernel

code, the global work item size should be kept as the row

number of the data at all times. As a result, we could only

control the number of the compute units and the size of local

item at a time.

As shown in the table 2, even though the same input data and

algorithm was used, the execution time of each experiment

changed according to the size of the local item. It was directly

correlated to the number of the compute units because the

number of compute units was multiplied by the size of local

item in each experiment equaled the number of the points in the

data set.

In the table 2, we found that making the number of compute

units used in an experiment closer to the physical number of the

compute units, in this case 40, made better performance

compared to other configurations. The figure 8 shows that the

number of the compute units can be a key fact that can decide

the performance of the implementation of the algorithm using

OpenCL.

Fig. 8 Simulation result of the k-means nearest clustering algorithm

with respect to the number of compute units with various size

V. CONCLUSIONS

In this paper, we proposed a method to optimize a machine

learning algorithm for a heterogeneous platform using the

OpenCL framework. The OpenCL is the first open standard

language and framework for general purpose parallel

programming for heterogeneous systems.

The machine learning is another big talking point today

since its influence in the every industry is growing by the

vitalization of big data. In the machine learning, k-means

nearest clustering algorithm is one of the representative

classifications algorithm, which is very useful for certain types

of data in unsupervised environment.

We showed that the performance of the experiment

implemented using OpenCL was better than the result of the C

code when the size of the input data was sufficiently large in

this two dimensional input data set. We confirmed this result in

the experiment when the number of the points in the input data

set was larger than 1,000,000 points, at which point the ratio of

execution times C[μs]/OpenCL[μs] was 189%.

ACKNOWLEDGMENT

This work was partially supported by the MSIP, Korea,

Int'l Conference on Computer Science, Data Mining & Mechanical Engg. (ICCDMME’2015) April 20-21, 2015 Bangkok (Thailand)

http://dx.doi.org/10.15242/IIE.E0415070 128

under the CITRC support program (NIPA -2014 -H0401 -14

-1001) supervised by the NIPA, and the NRF

grant funded by the Korea government (MSIP) (NRF-

2014R1A2A1A11052701).

REFERENCES

[1] Laney, Douglas. “3D Data Management: Controlling Data Volume,

Velocity and Variety”, in Gartner, Retrieved 6 Febrary 2001.

[2] Nalia Farooqui, Christopher J. Rossbach, Yuan Yu, “Dynamic

Instrumentation and Optimization for GPU Applications”,

sfma14.cs.washington.edu

[3] Khronos group, https://www.khronos.org/opencl/.

[4] Mihai Budiu, Dennis Fetterly, Michael Isard, Frank McSherry, and Yuan

Yu, “Large-Scale Machine Learning Using DryadLINQ”, SCALING UP

MACHINE LEARNING parallel and distributed approaches, 2012, pp52,

[5] Peter Harrington, Machine Learning in Action, Jpub, 2013, pp 259ㅡ282.

[6] Fixsatrs, The OpenCL Programming book, http://www.fixstars.com

/en/opencl/book/OpenCLProgramming Book/opencl-c/

Int'l Conference on Computer Science, Data Mining & Mechanical Engg. (ICCDMME’2015) April 20-21, 2015 Bangkok (Thailand)

http://dx.doi.org/10.15242/IIE.E0415070 129

http://www/

