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Abstract— Today, there is no one who disagrees on how 

important data is in every industry especially in enterprise market. 

More recently, the key point that decides the survival of a business is 

the management of their big data, which is defined by the 3V‟s: 

Volume, Velocity, and Variety [1]. While the rate of data generation 

increases exponentially, processing that data with the limited 

resources can be a burden to the both business managers and IT 

managers. Therefore many researchers have already studied new 

systems which can serve as an alternative resource to calculate and 

process data. 

Parallel hardware, such as a general-purpose GPU (GPGPU), is 

one of the most well-known alternative. With them, it is possible to 

process various applications, including data-intensive applications, 

quickly [2]. OpenCL, in collaborated with several GPU vendors and 

software organizations, has been launched by the Khronos group as 

the first open standard platform for the programming of both the GPUs 

and CPUs [3]. It makes the binary codes execute on various 

heterogeneous processing units such as CPUs, GPUs and FPGAs 

simultaneously. It also supports small clients like mobile GPUs for the 

mobile world.  

This paper proposes the method to optimize a machine learning 

algorithm with the heterogeneous platform which uses both the CPUs 

and GPUs using OpenCL. Through the experiment, we show that our 

method can reduce the execution time of the k-means nearest 

clustering algorithm, which is one of the most common algorithms in 

the machine learning industry, up to 40%. The more data we use in our 

system, the faster our results are when compared to the experiment in 

the multi-core system.  
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I. INTRODUCTION 

ROCESSING applications and its data is becoming more 

important in modern society. There are several ways to 

process applications and data by using different computing 

systems. For example, multi-core, many-core, or 

heterogeneous-core can be used. Above all, a heterogeneous 

system not only include CPUs but also GPUs or DSPs 
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simultaneously. In this paper, we deal with a heterogeneous 

computing system which typically include both multi-core 

CPUs and multi-core GPUs.  

OpenCL is the first open standard parallel programming 

framework for this heterogeneous computing system. It is 

designed to process large data sets rapidly by allowing a 

programmer to control the specific hardware resources through 

OpenCL language. Therefore, it can especially be useful in 

processing large amounts of data very quickly.  

We use OpenCL as a method to control our heterogeneous 

platform including both the CPUs and the GPUs. We also use 

the k-means nearest clustering algorithm for a machine 

learning task as a target to optimize in this heterogeneous 

architecture. The k-means nearest clustering algorithm needs 

the simple iterative computation logics, therefore it is useful to 

apply to any machine learning workload. Each iteration group 

has the input vectors of their nearest center and the mean value 

of each group, which is then used as the center for the next 

iteration [4].  

The k-means nearest clustering algorithm is a classical 

clustering algorithm that divides a collection of vectors into k 

groups. Each vector belongs to the cluster of the nearest 

centroid.  For the machine learning, it can be used when the 

people don‟t know the target value or the label as a result of 

algorithmic processing. Therefore it can be a type of 

„unsupervised algorithm‟ [5]. 

In this paper, we implemented the k-means nearest 

clustering algorithm that is optimized to increase performance 

using OpenCL. Using the experiment‟s results, we can 

optimize the algorithm to our heterogeneous system to obtain 

the best performance. In the section 2, we introduce the 

concepts of the k-means nearest clustering algorithm briefly. In 

the section 3 we describe the details of our implementation of 

the algorithm using OpenCL and also describe the method how 

we optimized the OpenCL code with this algorithm compared 

with C code. In the section 4, we present the experimental 

results to validate our optimized method.  At the end of this 

paper, we give the conclusion in the section 5.  
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II. K-MEANS CLUSTERING ALGORITHM 

A. Concept of the algorithm 

The k-means nearest clustering algorithm is one of the 

clustering algorithm as shown in the figure 1. In this figure, it 

is represented that the key concept of the k-means nearest 

clustering algorithm. Using this algorithm, users can make the 

k clusters, which bind the most relational points.  

 
Fig. 1 Result of working with K-means clustering algorithm 

 

The position of all points in this figure divided by the 3 

clusters. The points which have the same shape indicate that 

they are in the same cluster. The cross shapes indicate the 

centroid or the mean value of each cluster. It is the basic 

concept of the k-means nearest clustering algorithm.  

B. Processing k-means algorithm 

In section B, we present how the k-means nearest clustering 

algorithm processes its data roughly with 7 steps. In the figure 

2, the 7 steps are described.  

The first step of the k-means nearest clustering algorithm is 

normalizing all the points. The experiment in this paper only 

uses 2 dimensional values. If someone wants to use more 

dimensions they could do with the same way. This means that 

according to the range of input data in each dimension, the 

influence of each dimension can be absolutely different. In 

order to miniscule this effect fairly, normalization should be 

conducted to make each dimension has the same influence to 

the results.  

In the step 2, the algorithm randomly creates k-points 

initially, which are used as the initial values of each cluster‟s 

centroid. In the step 3, we calculate the distances between the 

centroid set from the step 2 and every single point. The step 4 

assigns all the points to the nearest cluster from each point. To 

update clusters more accurately, the algorithm calculates the 

mean value among the points in each cluster in the step 5. 

 

 
Fig. 2 The process of K-means nearest clustering algorithm 

 

After calculating the mean value of each cluster, the values 

calculated in the step 5 are used as the new centroids of the 

clusters. In the last place, all the steps starting from the step 2 

are repeated until there is no change of assignment.   

III. OPENCL IMPLEMENTATION 

 

 
Fig. 3 A code fragment of the C program 

 

The code in the figure 3 shows a small part of a C code 

implementation. It is the code fragment associated with the step 
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1: Normalize all of the points. All tasks in this C code is 

implemented using the iteration jobs. It is converted into the 

OpenCL kernel code using the data parallelism method as 

shown in the figure 4.  

 

 
Fig. 4 A code fragment of the OpenCL kernel program 

 

The implementation using OpenCL can be divided in two 

parts. The first part is the OpenCL C code for the CPU cores as 

the host device. The OpenCL C has some extensions and 

restrictions in add to fundamentally standard C (C99) [6]. The 

other part is the kernel code for the GPU cores playing a role as 

the compute devices.  

The code fragment in the figure 4 shows the definition of 

kernel function „PofNorm‟. It is the part of the kernel code 

which is applied to GPU cores. This code calculates the 

normalized values from the raw data only using 3 lines in 

parallel without any iteration code as shown in the figure 3.  

 
Fig. 5 The result of visualizing PofNorm kernel code 

 

The value of „gid‟, which means the global work item size, is 

set to the number of rows, as same with the number of all the 

data points in our data set. The reason we only used the data 

parallelism model using function „clEnqueueNDRangeKernel‟ 

in the host code is because it does the same jobs to every single 

input points. Therefore, it is inefficient to separate the same 

task into more than two parts.  

The result of visualizing the figure 4 can be presented to the 

figure 5. It visualizes how the kernel code processes the data to 

get the normalized values simultaneously.    

IV. EXPERIMENTAL RESULTS 

The platform used for the performance evaluation in this 

experiment consisted of an Intel i7- 4790 (3.6GHz) Quad-core 

processor as the host device, an AMD Radeon R9 290 Hawaii 

GPU as the compute device, and 16GB of DRAM. In this 

compute device, the maximum local work item size is restricted 

to 256 work items per dimension. The physical number of 

compute units that the operating system can recognize on the 

compute device is 40.   

The GPU has 2560 streaming processors physically. The 

execution time of the implementation with the OpenCL was 

compared with that of one implemented in C. The results are 

shown in the table 1 and the figure 6.  
 

TABLE I 

EXECUTION TIME OF THE K-MEANS CLUSTERING ALGORITHM OF C AND OPENCL 

IMPLEMENTATION 

 
 

In this experiments, presented in the table 1, we set the 

global work item size to the row number in the input data set. 

The local work item size is set to 256 which is the maximum 

value of the local work item size in a dimension. The table 1 

shows the execution time of the implementation using C code 

compared to the implementation using OpenCL.  

It shows that using C code took less time up to the point 

where the input data size was 100,000 points. However, when 

more than 1,000,000 points were used, the execution time for 

the C implementation exceeded the time that OpenCL took to 

process the input data. Same result is described as a graph in 

the figure 6.  

In this graph, we can see that the execution time of the 

OpenCL implementation increase slowly according to 

increases in the data size. However the execution time of the C 

implementation increases very rapidly. As a result, the rate of 

increase of the execution time for the OpenCL implementation 

is remarkably lower than the rate of increase of the processing 

time for the C implementation. 
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Fig. 6. Execution time of the k-means clustering algorithm of C and 

OpenCL implementation 

 
Fig. 7 The rate of execution time C[μs]/OpenCL[μs] 

 

Using the same code, we conducted another experiment 

using different numbers of compute units, which are presented 

in the table 2.  
 

TABLE II 

EXECUTION TIME OF THE K-MEANS NEAREST CLUSTERING ALGORITHM WITH 

RESPECT TO THE NUMBER OF COMPUTE UNITS WITH VARIOUS SIZE 

 

To guarantee the accuracy of the result using the same kernel 

code, the global work item size should be kept as the row 

number of the data at all times. As a result, we could only 

control the number of the compute units and the size of local 

item at a time.  

As shown in the table 2, even though the same input data and 

algorithm was used, the execution time of each experiment 

changed according to the size of the local item. It was directly 

correlated to the number of the compute units because the 

number of compute units was multiplied by the size of local 

item in each experiment equaled the number of the points in the 

data set.  

In the table 2, we found that making the number of compute 

units used in an experiment closer to the physical number of the 

compute units, in this case 40, made better performance 

compared to other configurations. The figure 8 shows that the 

number of the compute units can be a key fact that can decide 

the performance of the implementation of the algorithm using 

OpenCL.  

 

 
Fig. 8 Simulation result of the k-means nearest clustering algorithm 

with respect to the number of compute units with various size 

V. CONCLUSIONS 

In this paper, we proposed a method to optimize a machine 

learning algorithm for a heterogeneous platform using the 

OpenCL framework. The OpenCL is the first open standard 

language and framework for general purpose parallel 

programming for heterogeneous systems.  

The machine learning is another big talking point today 

since its influence in the every industry is growing by the 

vitalization of   big data. In the machine learning, k-means 

nearest clustering algorithm is one of the representative 

classifications algorithm, which is very useful for certain types 

of data in unsupervised environment.  

We showed that the performance of the experiment 

implemented using OpenCL was better than the result of the C 

code when the size of the input data was sufficiently large in 

this two dimensional input data set. We confirmed this result in 

the experiment when the number of the points in the input data 

set was larger than 1,000,000 points, at which point the ratio of 

execution times C[μs]/OpenCL[μs] was 189%.  
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