

Abstract— Dynamic software updating is one of the interesting

software practices in terms of alleviating service interruption and

performance degradation. It is obvious that dynamic updating can

contribute to performance improvement in high-end computing. This

paper presents useful guidelines and considerations when dynamic

software updating is applied for parallel applications. According to the

preliminary findings, dynamic software updates can be effectively

used in parallel programs.

Keywords—Dynamic software updating, DSU, Parallel

application, Software change

I. INTRODUCTION

ERFORMANCE improvement is one of the major

concerns in parallel computing. Parallel computing has

provided a solution for faster calculation in science and

engineering applications that need a massive computation. In

recent years, big data processing and mobile cloud computing

are expanding into a new research area in parallel computing.

In the software development perspective, similar research

has been conducted on how to improve the computation

performance of a running program. Adaptive software makes it

possible to fix program errors or add new features at runtime.

Adaptive software can be implemented by dynamic software

updating. Dynamic software updating can be applied for

mobile computing and parallel computing as well as server

applications.

The rest of this paper is structured as follows. Section 2

presents the background and related work on dynamic software

updating. Section 3 describes the proposed guidelines and

considerations for parallel dynamic updating. The preliminary

experimental result is described in Section 4. Section 5 presents

concluding remarks.

II. BACKGROUND

The goal of dynamic software updating is to change part or

whole of a running program, thereby enabling developers to

alter its behavior at runtime.

Figure 1 depicts how different static and dynamic updates

are. Static updates in the upper part of Figure 1 are typical code

maintenance which involves three tasks: system stop, code

Dong Kwan Kim is with the Mokpo National Maritime University,

Mokpo-si, Jeollanam-do 530-729 South Korea (corresponding author’s phone:

+82-61-240-7271; e-mail: dongkwan@gmail.com).

change, and system restart. When a parallel program is required

to change at time t2, developers should stop the program and

then fix or modify some part of the program. Obviously, the

parallel program cannot continue its services or computation

during updating. Therefore, such updates can result in service

interruption and performance degradation. In contrast to the

static update, dynamic updates are more effective and efficient

in terms of saving computation time and providing seamless

service. The lower part of Figure 1 shows that dynamic

software updating helps the program complete a scientific

computation at time t3.

Considerable research has been conducted on how to change

a running program at runtime. In controlled conditions, some

software systems are configurable and adaptable to a changing

operation environment [1]. They are dependent on a special

compiler, middleware, or runtime module.

As C, C++, and Java are getting more popular, DSU systems

have been developed by utilizing prior research findings. The

Rubah [2] system updates Java programs at runtime. It supports

whole program updates and uses bytecode rewriting on a

standard JVM. It also allows nearly arbitrary class changes.

Unlike the Rubah system, the Jvolve [3] system relies on a

dedicated JVM to implement the dynamic update service. In

addition to these systems, the standard JVM provides a

dynamic update facility called HotSwap with some limitations.

There are also many updating systems for C applications.

The Ginseng system [4] realizes dynamic updates by adding

patch files that contains differences between an old and new

version. It is composed of a dedicated compiler, a patch

generator, and a runtime system that links a patch file to a

running program. In addition, POLUS [5] can modify binary

code, not source code directly and the UpStare system [6] can

change multi-threaded programs using stack reconstruction.

Dynamic updates can be extended to wider application domains

such as operating systems [7], database schema evolution, and

virtualization.

Supporting Online Code Changes in Parallel

Applications

Dong Kwan Kim

P

International conference on Innovative Engineering Technologies (ICIET’2014) Dec. 28-29, 2014 Bangkok (Thailand)

http://dx.doi.org/10.15242/IIE.E1214073 70

 Fig. 1 Dynamic software updating

III. PARALLEL DYNAMIC UPDATE SYSTEMS

Figure 2 shows the structure of the proposed parallel

dynamic software update system. The parallel DSU System

consists of update preprocessor, code transformer, utility,

update synchronizer, update point extractor, update recovery

manager, and update runtime system. According to users’

update requests, this update system changes a parallel

application that is running on a computer cluster.

Fig. 2 Parallel dynamic update system

The update point extractor should select proper update

positions in the program in order to perform safe code updates.

Even if an external update request is arrived, the update will be

delated until the program execution reaches the safe update

point. Therefore, the update points affect the performance of

the update system. The update system maintains the balance

between safety and timeliness of the update.

Since multiple nodes participate in an update, the update

synchronization is required to maintain the overall system-wide

consistency. Without the synchronization mechanism, update

nodes cannot communicate with non-updated nodes. The

update synchronizer in Figure 2 deals with the consistency of

the parallel application. Figure 3 depicts the synchronized

updates for parallel applications. All participating processes

perform their own jobs at the same time. When a user requests

an update, the update manager in the DSU system notifies each

worker process to start updating. All worker processes send

back a signal to the update manager when they finish the update.

Each worker process can resume its prior computation after all

updates are completed.

Fig. 3 Synchronizing parallel dynamic updates

The update system cannot avoid performance overhead of

the target application. However, it should impose essentially

little overhead due to updates. In particular, since parallel

applications should complete a given computation as fast as

possible, the computation performance cannot be compromised.

The code transformer can insert an update code to the target

application for the safe update. Such update code should not

affect the functionality of the original code.

Even if updates have been applied, the behavior of the

updated application may be working as unexpected for some

reasons. In case of unexpected updates, the update recovery

manager can nullify the applied updates. It enables the

application to stay in a correct state by replacing the new

version of the application with the old one. Consequently, the

application rolls back to the state before updating.

IV. PRELIMINARY RESULTS

Parallel applications often run on computer clusters where

computer nodes are connected through a variety of network

devices. A job scheduler in the cluster controls the execution

order of jobs from cluster users. The initial version of a

dynamic updating system has been implemented which follows

the part of the proposed guidelines. Obviously, this system runs

on a computer cluster and is controlled by its job scheduler.

Simple but typical MPI applications have been updated at

runtime including matrix multiplication and prime number

calculator. The experimental results show the performance

overhead imposed by dynamic updates could be acceptable.

We can also use a computer cluster which consists of

single-board computers such as Raspberry Pis [8]. The

Raspberry Pi cluster can be built at a low cost and take up less

space. Prior experiments show that the Raspberry Pi cluster can

be a test bed for parallel applications. Dynamic update systems

are dependent on programming languages and operating

systems because they should change running applications

loaded into memory. MPI programs running on the Linux

operation system can use system library calls such as dlopen,

dlclose, and dlsym.

International conference on Innovative Engineering Technologies (ICIET’2014) Dec. 28-29, 2014 Bangkok (Thailand)

http://dx.doi.org/10.15242/IIE.E1214073 71

Fig. 4 The sequence diagram for dynamic updating

Figure 4 illustrates the flow of applying dynamic updating

for parallel applications. The user starts the main function of

the target program and then the MPI execution environment is

initialized. Some processes will join a computation and perform

the part of the computation. When the user sends an update

request to the running parallel program, the root process

broadcasts an update message to the participanting processes.

For the update synchronization, the root process also sends a

barrier message to the all worker processes. Even if a worker

process completes the update, it is blocked until the others will

do. After all updates are finished suceessfully, each worker

process can resume the previous computation whose state

information has been stored right before the update. The

intermediate results of the old version are transferred to the new

one. Therfoere, the old version’s computation will be continued

in the new one without loss of the intermediate results.

V. CONCLUSION

In terms of shortening downtime, dynamic software updating

can be effective in parallel application. This paper presents

fundamental and useful strategies of allowing parallel

applications to be changed at runtime. The initial

implementation demonstrates the proposed suggestions on

dynamic updating are feasible in parallel applications.

ACKNOWLEDGMENT

This research was supported by Basic Science Research

Program through the National Research Foundation of Korea

(NRF) funded by the Ministry of Education, Science and

Technology (2012R1A1A1006022, NRF-2010-0022080).

REFERENCES

[1] J. Kramer and J. Magee. Dynamic configuration for distributed systems.

IEEE Trans. Software Engineering, 11(4):424–436, 1985.

http://dx.doi.org/10.1109/TSE.1985.232231

[2] Lu´ıs Pina Lu´ıs Veiga, and Michael Hicks, Rubah: DSU for Java on a

stock JVM, Proceedings of the ACM Conference on Object-Oriented

Programming Languages, Systems, and Applications, Oct. 2014.

[3] Suriya Subramanian, Michael Hicks, and Kathryn S. McKinley. Dynamic

software updates for Java: A VM-centric approach. ACM Conference on

Programming Language Design and Implementation, June 2009.

[4] Iulian Neamtiu, Michael Hicks, Gareth Stoyle and Manuel Oriol, Practical

Dynamic Software Updating for C, In Programming Language Design

and Implementation 2006, June, Ottawa, Canada, 2006.

[5] Haibo Chen, Jie Yu, Chengqun Hang, Binyu Zang, and Pen-Chung Yew,

Dynamic Software Updating Using a Relaxed Consistency Model, IEEE

Transactions on Software Engineering, vol. 37, issue 5, September 2011.

[6] Kristis Makris and Rida A. Bazzi, Immediate Multi-Threaded Dynamic

Software Updates Using Stack Reconstruction, In USENIX Annual

Technical Conference 2009, June 2009.

[7] Andrew Baumann and Gernot Heiser, Providing Dynamic Update in an

Operating System, Proc. USENIX, 2005.

[8] Raspberry Pi computer, http://www.raspberrypi.org

International conference on Innovative Engineering Technologies (ICIET’2014) Dec. 28-29, 2014 Bangkok (Thailand)

http://dx.doi.org/10.15242/IIE.E1214073 72

http://dx.doi.org/10.1109/TSE.1985.232231
http://dx.doi.org/10.1109/TSE.1985.232231
http://dx.doi.org/10.1109/TSE.1985.232231

