
 

Abstract— In this paper, the cohesive crack growth analysis has 

been investigated in saturated porous media. The XFEM 

algorithm is used for enrichment of displacement field, in which 

exploits the Heaviside step function as the enrichment function for 

representing the crack surfaces. The mass balance equation and 

the momentum balance of solid and fluid phases are used to reach 

the fully coupled set of equations in the framework of u-p 

formulation. The crack surfaces are assumed to be impermeable to 

ease the general procedure for the analysis of the cohesive crack 

growing. The nonlinearity imposed to the problem by accounting 

cohesive forces makes it necessary to implement Newton-Raphson 

iterative procedure to solve the nonlinear system of equations. 

 
Index Terms—X-FEM method, Cohesive crack, Saturated 

porous media, Crack propagation, u-p formulation 

I. INTRODUCTION 

Introduction of extended finite element method by 

Belytschko and Black [1] and Moes et al.[2], facilitates the 

modeling of propagation of discontinuities that requires 

re-meshing in finite element method and proved to be a reliable 

and an efficient method for modeling strong discontinuities 

[2-4] and weak discontinuities [5,6].  

Materials like soil and concrete physically possess huge 

amount of void spaces, in a way that affects the material 

behavior mechanically. The mechanics of porous materials are 

originated basically from the researches held by Terzaghi [7] 

and Biot [8], that since then has been the focus of so many 

number of studies.  

Porous materials may undergo discontinuities by 

experiencing high external loadings. These discontinuities 

happened in the media may lead our system to initiating and 

propagation of cracks and ultimately failure. As a result, 

behavior of body including any discontinuities like cracks or 

shear bands can be extensively changed.  In literature both 

singular and cohesive zone assumptions for modeling the tip of 

crack have been carried out to govern the mechanical behavior 

of the defects in porous media [9]. 

The behavior of the fracturing material, around the crack tip 

is nonlinear. In order to model this nonlinearity, the cohesive 

model is used. In this model, we have two main assumptions. 
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First, the near tip fracture processes are considered to occur 

through the crack line, in which in linear elastic fracture 

mechanics it is supposed to be occur at crack tip. Basic cohesive 

zone models have been proposed by [10], [11], in which in 

cohesive zone, a traction separation law relating the cohesive 

tractions to relative displacements is exploited.   

In present paper, the extended finite element method is used 

for modeling cohesive crack propagation in saturated porous 

media. In order to account the crack opening, some 

modifications have been implemented to our formulation. In 

this regard, the displacement jump is captured through the 

model by adding enrichment functions across the fracture to the 

displacement field. However, the pressure field has been 

assumed to be continuous across the fracture. 

II. FORMULATION 

In this section, the governing equations for saturated porous 

media and the equations related to modeling the cohesive crack 

is presented. The momentum balance equation can be written as 

follows: 

. 0tB                                                            (1) 

Where B is the body force and  t   is the total density of the 

media, and can be formulated as, 
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Where  s   and  f   are the density of solid and fluid phase 

and n denotes the porosity. The total stress vector  can be written 

in terms of the effective stress vector ,  

(p )fm                                                      (3) 

and the constitutive relation is defined in terms of the 

effective stress and strain increments, 
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where C  is the elastic stiffness tensor and   is the Biot’s 

constant, 
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    with TK   and SK   defined as the bulk modulus of porous 

skeleton and solid grains, respectively. The momentum balance 

equation for the water phase leads to the generalized form of the 

Darcy equation, 
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and the final form of the continuity equation for the water phase 

can be expressed as 
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where K is the permeability tensor SK   and fK  are defined 

as the bulk modulus and the Darcy velocity for the water phase, 

respectively. The boundary conditions include the imposed 

tractions and water fluxes on the outward boundaries and the 

corresponding prescribed essential boundary conditions for 

solid displacements and water pressures, 
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Additional condition is satisfied at fracture surfaces to 

account for compatibility of transformed cohesive tractions with 

the cohesive zone model adopted for the governing mechanical 

behavior of the fracture. In order to model the hydro-mechanical 

behavior of the fracture, the following internal boundary 

condition is applied, 

 

. (p )
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where 
c

n   is the unit normal vector to the crack surface,   cT  is 

the cohesive traction resulted from the cohesive law and p f   is 

the value of water pressure imposed on the crack surface. By 

applying the weighted residual method to equations, (1) and (7), 

with their corresponding boundary conditions, equations (9) 

and (10). The final weak form of equations will be obtained. 
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u  and p f  represent the variations of solid displacement 

and water pressure, respectively and act as the weighting 

functions in the proposed Galerkin weak form of the fully 

coupled saturated porous medium. The integrals on the crack 

surfaces ( c  ) are the interfacial terms resulted from the 

hydro-mechanical exchange of tractions through the fracture 

walls. The differential operators uD  and pD   are defined as, 
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III. NUMERICAL DISCRETIZATION AND NON-LINEAR SOLUTION  

In order to model the displacement and pressure field, the 

following enriched local variables are defined;  
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where ( )iN x   and ( )p

iN x   stand for the standard finite 

element shape functions for discretization of the solid 

displacements and water pressures, respectively. iu  and ja  

are the standard and enrichment degrees of freedom. H(x) is the 

Heaviside enrichment function (15) representing the 

discontinuous part of the displacement field. 
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Insertion of the enriched approximation (14) into the weak 

form equations of (11) and (12) results in the complete 

discretized set of constrained equations for the fully coupled 

saturated deforming porous medium, 
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along with the following internal force, 
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( ) ( )k kN x x x   

( )kN x is defined as the set of nodes placed along the 

essential boundaries and, 
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and using the Newton–Raphson algorithm, the final form of 

the discretized set of equations can be written as, 
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and the residual and unknown vectors can be expressed by: 
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Differentiating the residual with respect to the unknowns 

vector X, gives the Jacobian matrix for the constrained system 

of equations, 
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The following fully coupled nonlinear system of equations 

should then be solved at each time step to compute the vector of 

unknown increments, 
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in which  
, 1i nR 

 is given in (21),(22) and is computed as 

following: 
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where  
nP  is the value of converged solution from the last time 

step of analysis: 
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Then, the unknowns vector is updated at each iteration until 

the required convergence criterion is satisfied: 
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IV.  NUMERICAL MODELING 

The problem is analyzed, assuming a fully saturated 

medium. The notched square plate has a length 50mm and is 

located along the symmetry axis. The geometry and loading of 

the plate are shown in Fig.1. The plate is loaded in pure mode-

I by two vertical velocities of 52.35 10 .     . 

All boundaries of the plate are assumed to be impermeable. 

The analysis is carried for a discretization of   bilinear 

quadrilateral elements with time steps of 0.01 s. The numerical 

analysis continues until the crack tip has reached the right hand 

side of the plate. Fig. 3 shows the contours of the pressure fields 

at time steps and Fig. 4, shows the contours of pressure gradient. 

At last time step, the stress fields across the domain is displayed 

in Fig. 5. Also material properties are presented in table.1. 

 
TABLE I: MATERIAL PROPERTIES 

Young’s modulus (Pa) 
 

Solid bulk modulus (Pa)  

Fluid bulk modulus (Pa) 
 

Water viscosity (MPa s) 
 

Intrinsic permeability of water (m2) 
 

Poisson’s ratio 0.18 

Biot’s coefficient 1 

Tensile strength (MPa) 2.7 

Fracture energy (N/mm) 0.095 

Porosity 0.2 

 

 
Fig. 1. Propagation of a cohesive crack in a saturated porous medium 
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Fig. 2: Pressure Field at different steps of time of the analysis for the mode I cohesive crack 

propagation in a saturated porous media with no coupling term (values in Pa) 
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Fig. 3:  Water gradient at different steps of time 

 

Fig. 4: Stress fields at last time step (values in Mpa) 
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CONCLUSION 

In this paper extended finite element method is utilized for 

modeling cohesive crack discontinuities in saturated porous 

media. This theory proved to be a sufficient method to capture 

the strong discontinuities. And helps to model the 

discontinuities with acceptable accuracy without necessity of 

resmeshing and implementing refined meshing.  
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