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Abstract—Water flow equation in unsaturated soil is based on 

Richards’ equation. The equation could be solved using semi-

analytical solution. Philip first coined the solution in 1957. Due to the 

mathematical complexity employed by Philip, its mathematical 

solution at that time remained inaccessible to many researchers. The 

solution was first made comprehensible by Kirkham and Powers in 

1972 by providing details account by describing all steps used in the 

mathematical derivation. The solution has significant implication that 

it could be adapted to model diffusion process of other applications 

like contaminant transport or heat flow, and it can be used to validate 

numerical model that use to govern the diffusive process. When 

combined with global sensitivity analysis and inverse method, it could 

be used to study uncertainty of model input and also to estimate 

input parameter, respectively. In this study, the solution given by 

Kirkham and Powers was programmed to simulate water flow in 

unsaturated soil. The currently available data, in the literature, for 

coded model is to compare with Haverkamp and his co-worker's 

dataset. The dataset has a significant drawback because it was based 

on a different equation than the one commonly applied by soil 

physics community, i.e. van Genuchten constitutive functions. A 

new dataset based on van Genuchten equation was generated for 

sandy loam at 6, 12 and 30 mins, and it has been validated by 

numerical solution. The new dataset will be a useful reference for 

modeler in model validation. 

 

Keywords— sandy loam, van Genuchten constitutive functions, 

Richards’ equation, water flow in unsaturated soil.  

I. INTRODUCTION 

 

hilip in 1957 [1] solution is applied on the diffusion of one-

dimensional flow problem. The flow path can be directed 

upward, downward, or horizontal. Various phenomena, such as 

heat, moisture, molecules and solute flow, that governed by 

diffusion equation can be solved by Philip’s semi-analytical 
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solution. From now on, Philip’s semi-analytical solution is 

written as PSA. In solving Richards’ equation [2] that is used 

to govern variable water saturation media, Philip first solved 

for horizontal flow (1) using Boltzmann transformation (3) that 

is then extended to solve for vertical flow (2) to include the 

effect of gravitational force.  
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PSA method is known to be free from specific dependence 

between diffusivity ( ) and volumetric water content ( ). The 

independence also implies that the relations given by   and   

can be governed by any constitutive functions, i.e. van 

Genuchten [3], Haverkamp [4], and so forth. The   is matric 

pressure head and   is the hydraulic conductivity at variably 

water saturation in soil. Water infiltration data generated by 

PSA method has significant important because modeler could 

use the data to validate their numerical simulation results 

before applying to other cases, e.g. Noborio [5]. However, the 

widely made available water infiltration data in the literature is 

from Haverkamp [4] who have solved water infiltration problem 

on Yolo light clay and sand media, but the constitutive 

functions used are different from the widely used van 

Genuchten constitutive functions for matric pressure head and 

hydraulic conductivity. In the current study, PSA method is 

applied to solve Richards’ equation and the relation between 

diffusivity ( ) and volumetric water content ( ) used is estimated 

from van Genuchten constitutive functions. Sandy loam is 

used as the water infiltration media. 

II.  MATERIALS AND METHODS 

The following sub-sections summarized the semi-analytical 

solution used to solve Richards’ equation in unsaturated soil. 

Philip invented the solution in 1957, but the mathematical 

solution remained unknown to many until Kirkham and Powers 
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[6] uncover the mathematical steps in significant details. For 

detail description of the solution for horizontal and vertical 

flow, refer to Kirkham and Powers [6]. The mathematical 

equation and solution described in sub-sections A and B were 

merely summarized from Kirkham and Powers [6], except in 

Table 1 some variables were newly derived. 

A. Horizontal Flow Solution 

In solving horizontal flow, Boltzmann transformation is used 

to remove spatial variable ( ) and time ( ) from the partial 

derivative of (1). The Boltzmann-transformed partial differential 

equation is then integrated from initial background volumetric 

water content value ( ) to variably volumetric water content, as 

follows: 
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By using histogram rectangles, where   as y-axis and   as x-

axis, a finite difference solution of (4) is established to 

represent each rectangle of the histogram. Also, two formulae 

to represent area under the   curve by removing the successive 

rectangles are developed separately and then combined to 

form a single formula that can be used to govern successive 

reduction of area under the   curve by successive reduction of 

rectangles. Finite difference solution of (4) and the combined 

equation, together they formed sequence of formulae to 

compute  . Hence, it generates curve of   provided that if and 

only the area ( ) under the   curve and   relation are known.  

Moreover, the estimation of   area may be wrong and it requires  

a second method for comparison. This is done by comparison 

the area value at   rectangle of histogram. The resulted value ( ) 

given by the subtraction between the first ( ) and second ( ) 

method as   would be used to update the   area value and then 

subject to the same sequence of formulae to compute  . until 

the   value, as described, to be insignificantly small. Finally, it 

generates   curve. The curve can be utilized by first rearranging 

(3) into (5). The volumetric water content values corresponding 

to the rectangles of the histogram are located between initial 

background volumetric water content value ( ) and imposed 

boundary volumetric water content ( ), they give direct relation 

to the   values. By specifying the time of infiltration and the 

volumetric water content values corresponding to the 

rectangles of the histogram, the spatial variable ( ) can be 

calculated by (5). 
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1

2
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B. Vertical Flow Solution 

Vertical flow governing equation (2) includes the effect of 

gravitational force that is in addition to horizontal flow (1). PSA 

solution does not solve vertical flow equation directly, but it 

solves horizontal flow equation by taking into consideration 

layers of error resulted by the difference between vertical and 

horizontal flow equations. For easy understanding and a clear 

distinction, horizontal flow equation is rewritten as follows: 
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Horizontal flow (6) and vertical flow (2) equations that have 

volumetric water content ( ) as dependent variable on the left 

side of the equations. It must first be transformed to   and   as 

dependent variables, corresponding to (7) and (8) as follows: 
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By subtracting (7) from (8), it results in the following: 
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(9) is then approximated using 
'

y y

x x

 
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  and  

'y y  as 

follows: 
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In similar manner,   dependent variables can be derived as 

following: 

2
' ' '

' ' '

L

L

z z y
D

t x x x





      
             

                       (11) 

From (2) and (6) to (11), it is evident that: (i)  
'x  represents 

horizontal flow and x   represents vertical flow; and (ii)  y  is 

the result of taking 
'x x  , which is due to deviation (or error) 

of horizontal flow from vertical flow. By including the error  y  

value into horizontal flow equation estimation, it would be 

practically equating horizontal flow to vertical flow. It is 

achieved by solving (10) for  
'y , instead of (9) for y  , 

because in horizontal flow solution for  
'x  has been solved 

through   versus L   relation. Hence, solution on 
'y  would 

be built on solution on 
'x   from horizontal flow. Then, the 

difference given by 
'y y   would be error z  , and it would be 

approximated by 
'z   , and so forth. When compare to 

horizontal flow of (5), in a similar manner, vertical flow equation 

can be represented by (12), where on the left hand side  

represent solution to vertical flow equation. On the right hand 

side: the first term,  
1

2
L t   , is the solution to horizontal 

flow equation only; the second term,  
2

2
L t   , is the error 

7th Int'l Conference on Agricultural, Chemical, Biological and Environmental Sciences (ACBES-2017) May 22-24, 2017 Kuala Lumpur (Malaysia)

https://doi.org/10.15242/IIE.C0517022 64



 

 

given by 
'y ; and the third term,  

3

2
L t    , is the error given 

by  
'z , and so forth. 
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While in horizontal flow equation (6) is solved by  
1

2
L t   , 

i.e. Boltzmann transformation, the errors 
'y   (10) and 

'z   (11) 

are respectively solved by  
2

2
L t    and  

3

2
L t   , i.e. 

extended Boltzmann transformation, and so forth. The 

corresponding solutions to (10) and (11) could be generally 

written as follows: 

n
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where f   represents   ,    and so forth. The    and    

are known functions of L  , and these variables varies for 

different errors under consideration, i.e. 
'y  , 

'z  , 
'w   , and so 

forth. Five pairs of    and    are derived corresponding 

to    ,    ,   ,    , and   , refer to Table I. For instance,  

   and     functions for 
'y  is given by: 

2

LD
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Similar to solution used to solve horizontal flow equation, two 

formulae to represent area under the Lf    curve by 

removing the successive rectangles are developed separately 

and then combined to form a single formula that can be used to 

govern successive reduction of area under the Lf    curve 

by successive reduction of rectangles. The sequence of 

formulae and other mathematical manipulation are used to 

compute  . Hence, it generates curve of 

 versus Lf   , e.g.  ,  versus L  ,  versus L    and so 

forth. By specifying the time of infiltration and the volumetric 

water content values corresponding to the rectangles of the 

histogram, the spatial variable (x ) for vertical flow equation can 

be calculated by (12). 

 

 

 

 

 

 

 

TABLE I 

THE VARIABLES OF   AND    ARE DERIVED FOR   ,   , 

  ,    AND   
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III. RESULTS AND DISCUSSION 

The infiltration medium is sandy loam that has parameters of 

characteristic functions of van Genuchten [3] as tabulated in 

Table II. The water infiltration solved using Philip’s semi-

analytical solution with 100 rectangles. The Philip’s semi-

analytical solution was based on step solution outline by 

Kirkham and Powers [6]. At time equal zero, the volumetric 

water content is 0.15 m3·m-3. At the surface of infiltration, 

when time greater than zero, the surface boundary is imposed 

by near saturation volumetric water content, i.e. 0.4098 m3·m-3. 

Similarly, a numerical simulation on (2) is implemented for 

comparison to the Philip’s semi-analytical solution. The results 

of water infiltration after 6, 12 and 30 minutes are illustrated in 

Fig. 1. The results indicate Philip’s semi-analytical solution has 

comparable water infiltration data as the numerical solution at 

different infiltration depths. The governing equation and 

numerical method is based on finite-difference. The data for 

water infiltration at different times, i.e. 6, 12, 30 minutes, are 

tabulated in Table III. The water infiltration data using van 

Genuchten constitutive functions for matric pressure head and 

hydraulic conductivity would be useful validation data for 

other modelers 

 

T ABLE II 

SANDY LOAM FITTED BY VAN GENUCHTEN CONSTITUTIVE FUNCTIONS 

AND ITS PARAMETER VALUES [8] 

Parameters Values 

s  (m
3·m-3

) 0.41 

r  (m
3·m-3

) 0.065 

  (cm
-1

) 0.075 

sK  (cm·min
-1

) 7.36806x10
-2

  

n   1.89 

In soil physics, water flow model is based on Richards’ 

equation. It has been extended by other researchers to model 

water flow in temperature gradient environment [7]. Also, the 

water vapor and energy transfers are modeled simultaneously 

with water flow. Therefore, the ability to validate water flow 
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model is necessary before adding multiphase flow and energy 

transfer equation; because it would help to ease model 

inspection in case of simulation error. 

 

T ABLE II 

WATER INFILTRATION DATA FROM PHILIP’S SEMI-ANALYTICAL 

SOLUTION AND VAN GENUCHTEN CONSTITUTIVE FUNCTION ON SANDY 

LOAM SOIL. WATER INFILTRATION T IMES ARE 6, 12 AND 30 MINUTES 

L
 (m

3·m-3
) t  = 6 mins t  = 12 mins t  = 30 mins 

0.3994 2.9315 4.7377 9.6365 

0.3864 3.6475 5.7333 11.0423 

0.3734 4.0413 6.2641 11.7769 

0.3604 4.3063 6.6159 12.2590 

0.3474 4.5018 6.8729 12.6074 

0.3344 4.6540 7.0717 12.8741 

0.3214 4.7768 7.2312 13.0865 

0.3084 4.8784 7.3627 13.2604 

0.2954 4.9641 7.4733 13.4061 

0.2824 5.0375 7.5679 13.5301 

0.2694 5.1012 7.6498 13.6373 

0.2564 5.1570 7.7217 13.7310 

0.2434 5.2066 7.7853 13.8141 

0.2304 5.2511 7.8425 13.8885 

0.2174 5.2916 7.8945 13.9562 

0.2044 5.3293 7.9428 14.0191 

0.1914 5.3654 7.9891 14.0794 

0.1784 5.4019 8.0361 14.1406 

0.1654 5.4441 8.0903 14.2113 

0.1524 5.5260 8.1957 14.3489 

Note: the second to fourth columns datasets are in 

centimeter unit, which is referring to the depth with respect to 

the volumetric water content in the first column 

 

 
 

Fig. 1 The comparison of water infiltration in sandy loam soil 

estimated by Philip’s semi-analytical solution and numerical 

simulation at 6, 12 and 30 minutes. Note: Philip is referred to Philip’s 

semi-analytical solution and Num. is referred to numerical simulation 

with the spatial size of 0.1 cm 

III. CONCLUSION 

Philip’s semi-analytical solution originated from Kirkham and 

Powers [6] was programmed to model water infiltration into 

unsaturated soil. A new dataset based on van Genuchten 

equation was generated for sandy loam. It would be a useful 

reference for model validation because van Genuchten 

equation is widely used in soil physics modelingon the 

importance of the work or suggest applications and extensions.  
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