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Abstract—Real-time embedded systems are widely used in 

many applications such as control, monitoring and aviation. Several 

tasks are performed under strict time constraints. In such systems, 

deadline miss may lead to a fatal result so that all tasks (jobs) need 

to be scheduled to ensure that they meet their deadline times. 

Scheduling policy is one of various factors that affect their 

performance. It determines which task or a set of tasks should be 

selected first from ready queue to run. This paper presents an 

effective dynamic scheduling approach during run-time based on 

using a single value such as Worst-Case Execution Time (WCET) to 

schedule periodic tasks in either multiprocessor or uniprocessor 

environments. It selects which process or a set of processes must be 

selected for execution. The proposed algorithm works in any real-

time system such as aviation, medical and process control for power 

plants or chemical plants. 

 

Keywords— Real-time embedded systems, scheduling approach, 

time constraints, deadline, performance, periodic tasks, dynamic, 
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I. INTRODUCTION 

CHEDULING which job(s) must be selected first and its 

or their parameters play a significant role on system 

performance. The main objective of scheduling is to decide 

which job is selected and run from ready queue and assigned 

to CPU [1]. Scheduling method affects CPU performance 

since it determines the CPU and resources utilizations [1],[2]. 

Two types of real-time systems exist nowadays and can be 

summarized as follows: 1) Hard real-time systems in which 

deadline miss means fail and could lead to a disaster result 

and 2) Soft real-time systems where deadline miss is tolerated 

and they still perform their functions. Scheduling can be 

defined as a method that specifies which task or a set of tasks 

is assigned to resources in order to complete a desired job.  

A scheduler is responsible for scheduling activity; it is 

implemented to ensure that all resources are kept busy and to 

give users availability to share different resources effectively. 

In real-time systems, schedulers are developed to make sure 

all processes meet their deadlines for stability/severity sake.   
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Static and dynamic methods for scheduling algorithms 

exist these days. In each category, there are two schemes of 

algorithms which are 1. Preemptive approach: where a task is 

blocked by a higher priority process and 2. Non preemptive 

approach: where the task completes its execution time even if 

a higher priority process has arrived [1],[2],[3]. A scheduling 

policy can be characterized by several factors which are 

summarized as follows: A. Do all processes meet their 

deadlines?, B. CPU Utilization: the percentage of the CPU 

being busy, C. Response time for every job and D. Fairness: 

which is dividing the CPU time equally among all available 

jobs [2],[3] and load balancing which is dividing the load 

equally among all processors/cores. 

Multiple algorithms exist which can be summarized as 

follows: 1) Rate Monotonic (RM): is static type for periodic 

tasks since each process is assigned a priority based on its 

request rate. The higher request is the higher priority is. 

However, that priority does not change during run-time and 

that is why it is called static [3],[6], 2) Deadline Monotonic 

(DM): is a generalization version of rate monotonic. Their 

concepts are almost the same; however, the difference is that 

in deadline monotonic a priority assigned to each process is 

inversely proportional to its deadline. So a process with 

shortest deadline gets highest priority and assigned first to the 

resources [3],[6],  3) Earliest Deadline First (EDF): a process 

with shortest deadline time gets its turn first since it has a 

highest priority among all other processes. This algorithm is 

considered optimal and can be used for both types of tasks 

(periodic and aperiodic) in uniprocessor environments and 4) 

Least Slack Time first (LST): where a task with smallest 

slack is chosen first and assigned to available resources for 

execution. Slack is defined as the difference between the 

deadline (d) of any task with its remaining execution time (cr) 

and current time (t) as depicted in figure 1 [2],[3],[4],[5]. 

 
 

Fig. 1 time constraints of periodic tasks 
 

Figure 1 shows time constraints of periodic tasks which 

are 1. Release time (r): which is a time at which a process 

becomes available at ready queue, 2. Execution time (c) 

which is considered to be the Worst-Case Estimated Time 
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“WCET”, 3. Period (P): a time when the process repeats its 

cycle, 4. Absolute deadline (D): which is a time interval 

between release time and period of the process. In 

mathematical form, D = d – r and 5. Relative deadline (d): 

which is an interval time between first creation of the process 

and its deadline; mathematically, it is d = D + r. In many 

cases, P and d are the same.    

Our contribution in this paper is done by developing a new 

hybrid scheduling algorithm for periodic tasks that works 

either on a uniprocessor or multiple processors systems; by 

hybrid we mean it cooperates with EDF algorithm when 

needed. It works during run-time to decide which task or a set 

of tasks should be selected first from ready queue and gains 

system resources such as CPU. The main objectives of this 

algorithm are to ensure that all processes meet their 

deadlines, keep a system stable, eliminate idle state of all 

existing CPUs and providing a good timely response time.    

In the remainder of this paper, we present related work on 

scheduling schemes in Section 2, followed by a detailed 

discussion of the proposed approach in section 3. Section 4 

includes two case studies to show the validation of the 

proposed approach on a multiprocessor environment. Section 

5 includes simulation results. Section 6 is the conclusion of 

the paper.  

II.  RELATED WORK 

In today's technology, many operating systems perform 

multitasking operations which mainly depend on scheduling 

algorithms [4]. These algorithms are used to ensure that all 

processes meet their deadline times and execute fairly [4],[5]. 

Multitasking can be defined as a concept of performing 

multiple operations at the same time. However, it does not 

imply that all tasks, also known as processes, are executed in 

parallel. In multitasking environment, decisions are made 

according to some criteria which can be summarized as 

follows: A. A new process was created, e.g., fork, B. A 

process switches from waiting to ready, e.g., I/O completion, 

C. A process switches from running to waiting, e.g., I/O was 

requested, D. A process switches from ready to running, e.g., 

CPU takes control of it and lastly E. A process was 

terminated.   

In [4], M. Hwang, P. Kim and D. Choi proposed an 

optimized scheduling dynamic algorithm which uses a rate of 

the remaining execution time over the remaining time until 

deadline. The higher rate is the higher priority is; they 

claimed it is the optimal method for multiprocessor since it 

schedules all tasks correctly. It is very similar to our 

approach; however, our proposed approach yields better 

results since it has the capability to schedule periodic tasks 

with different arrival times whereas the method in [4] 

assumed all tasks with the same arrive times and this issue 

was the motivation for the proposed method. In many real-

time systems, periodic tasks come with different arrival times 

and it is very rarely to have all processes with the same 

arrival times. So the algorithm in [4] is inapplicable for those 

systems. In [5], same procedures were done on different sets 

of tasks under various conditions by M. Hwang, P. Kim and 

D. Choi. Nevertheless, they did not include any information 

about their approach on tasks with different arrival times.  

J. H. Anderson, V. Bud and U. C. Devi in [9] proposed a 

new scheduling algorithm based on EDF for multiple 

processors environment on soft real-time systems. Each task 

is either fixed or migrating which means it moves between 

different CPUs to accommodate its execution time along with 

deadline one. Their goal was to ensure bounded tardiness in 

EDF; however, some deadline miss occur which is not 

allowed in hard real-time systems. Our method works on hard 

real-time systems and ensures all CPUs in multiprocessor 

environments are fully utilized and no deadline miss occurs at 

all time which keeps system stable and fully functioning. 

III. THE PROPOSED ALGORITHM 

The previous mentioned techniques such as RM, DM, LST 

and EDF are applicable on uniprocessor and are not preferred 

on multiple processors since they leave some CPUs with idle 

states and some deadline misses occur. Even the method 

described in [4] is unable to provide an optimal solution since 

it is useless on tasks with different arrival times. In the 

proposed algorithm, the motivations for it can be summarized 

as follows: 1. An efficient method on multiple processors and 

uniprocessor as well; working correctly on multiprocessor 

environments implies that it works too on uniprocessor 

without any issue, 2. Gives maximum CPUs utilization since 

it keeps all of them busy which delivers all tasks and no 

deadline miss occurs, 3. It is feasible approach which means 

it does what it is supposed to perform by ensuring stability 

under various circumstances and 4. An ability to develop an 

on-line dynamic scheduling technique which aims to prevent 

deadline miss at all times under several conditions or 

circumstances.  

The objectives of the proposed algorithm are to A. Make 

sure all processes meet their deadline times and no deadline 

miss occurs and B. Keep all resources utilized.  

Several assumptions are taken into consideration in order 

for the method to work in a right way and give the best 

results; the assumptions are as follows: A. Preemptive 

approach which means any task can be blocked by another 

task with higher priority, B. Task migration is allowed so the 

task finishes its execution on any available processor, C. All 

tasks in the ready queue are available upon selection and they 

are independent, D. Any process is not allowed to appear on 

multiple processors at the same time and  E. Combines with 

EDF algorithm when and if needed.  

The utilization U is computed as follows:  

                                 U=                                              (1) 

n represents number of processes available in the ready queue 

whereas i indicates the process index. 

 The following pseudo code describes how the proposed 
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scheme works. 

 

IV. CASE STUDY 

Two examples are presented in this paper to demonstrate 

how the proposed scheme performs. Both examples can be 

found in [5]. We will apply the proposed method on multiple 

processors environment since it is our concerned. First, we 

will perform EDF method on one example to show its 

weakness on multiprocessor and then perform our approach 

on it to show the difference in the results. 

Case 1: Same arrival time for five processes in the ready 

queue as shown in table 1 where three CPUs are existed and 

used. 

TABLE I  

AVAILABLE PROCESSES IN THE READY QUEUE 

Tasks 
Release 

Time 
Deadline 

Time 
Execution 

Time 

T1 0 2 1 

T2 0 2 1 

T3 0 2 1 

T4 0 8 6 

T5 0 8 6 

 

Using the EDF algorithm, the scheduling result is shown in 

table 2. Pi indicates the processor ID number. 

TABLE II 

EDF RESULT 
Time 

0 1 2 3 4 5 6 7 
8 

Processor ID  

P1 T1 T4 T1 T4 T1 T4 T1 T4 T4 

P2 T2 T5 T2 T5 T2 T5 T2 T5 T5 

P3 T3 
N

OP 
T3 

NO

P 
T3 

NO

P 
T3 

NO

P 
T1 

 

In processor 3, NOP represents no operation at that time 

which means it was idle. So T4 and T5 missed their deadlines. 

Both processors 1 and 2 were totally busy while processor 3 

was only busy for about 55% of its time. Table 3 represents 

the result of the proposed algorithm. 

TABLE III 

 RESULTS OF THE PROPOSED ALGORITHM 

Time 

0 1 2 3 4 5 6 7 Processor 

ID 

P1 T1 T2 T1 T2 T1 T2 T1 T2 

P2 T4 T3 T4 T3 T4 T3 T5 T3 

P3 T5 T4 T5 T5 T5 T4 T4 T5 
 

Table 3 indicates that all tasks met their deadlines and also 

all the three CPUs were fully busy and utilized.  

Case 2: Same arrival time for nine processes in the ready 

queue as shown in table 4 with four CPUs. 

TABLE IV 

RELEASE TASKS 

Tasks Release Time Deadline Time Execution Time 

T1 0 15 8 

T2 0 6 5 

T3 0 10 4 

T4 0 4 3 

T5 0 4 2 

T6 0 3 1 

T7 0 3 1 

T8 0 5 1 

T9 0 60 7 
 

All tasks met their deadline times as shown in table 5 

which represents a snap shot of the whole answer due to the 

space limitation. 

TABLE V 

RESULT OF THE PROPOSED ALGORITHM 

 

The coming section includes simulation tests which were 

perfromed to test the algorithm under various condition in 

order to prove its validation. 

Algorithm: Dynamic Scheduling Scheme  

1. All tasks in the ready queue are examined each time 

unit to decide which one should be selected first 

to assign to available resources Initialization: 

Generate random numbers for the deadline 

times (d), arrival time (r) and the execution time 

(c) 

2. Initially, remaining execution time (C
r
) = C, 

completed tasks (com) = 0 and deadline miss 

(dm) = 0 

3. While (ready queue != 0) 

4. Compute slacki, where slacki = di – t – ci
r, i is the 

process index and t represents current time   

5. A rate or ratio Ri, where i denotes the task index, is 

computed using the following equation: 

Ri = , di is the relative deadline and t is the 

current time as stated earlier   

6. A task with smallest rate gets the highest priority 

and assigned first to the system resources; if more 

than task have the same rate; then the task or set 

of tasks with shortest deadline is selected first. 

7. If (C
r
(i)  == 0), then 

8. Remove Ci(t) from ready queue and com = com + 1 

9. else 

10.  continue proceeding with remaining tasks 

11. If (ci
r > di) when process reaches its deadline, 

then 

12. Deadline miss occurs and dm = dm + 1  

13. If a new process arrives, insert it at its right place 

14. do 

15. End 
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V. SIMULATION EXPERIMENTS 

We developed a simulation system to test the proposed 

algorithm under various conditions. The simulation proved 

validation of it and showed it provides the desired results. 

More than 7000 task sets were tested with average of 30 tasks 

in each set; each set ran for an average of 8000 times. The 

simulation system works for uniprocessor and multiprocessor 

as well; several number of processors were used and the 

maximum number was set to 10 CPUs. The simulation tells 

how many tasks met their deadlines, how many tasks missed 

their deadlines and the elapsed time to complete all sets. The 

execution time (C) and deadline time (d) were randomly 

generated by the simulation where d is greater than C and 

several tasks may have the same deadline times; the same 

applies on the execution time (C). The maximum deadline 

time was set to 60 and 100 to investigate how the algorithm 

behaves under several circumstances when the number of 

processes increases. The arrival time (r) was also generated 

randomly by the simulation under a constraint that r < c and 

d. Table 6 contains information about a device and platform 

we used to test the proposed algorithm.  

TABLE VI 

CHARACTERISTICS OF USED DEVICE 

Platform 

Name 

System 

Type 
CPU Speed RAM 

Windows 10 

Pro 
64 bit 

I5 core 2 

Due 
2.67 Ghz 4 GB 

 

Case 1: Uniprocessor with the same arrive time (r = 0) 

TABLE VII 

RESULTS OF UNIPROCESSOR 

Number of 

Iterations  

Number of 

sets and 

tasks 

Number of 

completed 

tasks 

Number of 

deadline 

miss 

time 

1000 5/18 17 0 157s 

3000 5/25 31 0 193s 

7000 5/30 49 0 232s 

10000 5/20 89 0 319s 

 

Table 7 shows that the proposed algorithm was successfully 

scheduled all tasks and no task missed its deadline time. GUI 

in the simulation system took average of 24s in each run 

which is included in the results in time column.  

Case 2: Uniprocessor with different arrive time 

TABLE VIII 

RESULTS OF UNIPROCESSOR 

Number of 

Iterations  

Number of 

sets and 

tasks 

Number of 

completed 

tasks 

Number of 

deadline 

miss 

time 

8500 5/20 16 0 396s 

9300 5/15 52 0 471s 

10000 5/30 63 0 785s 

10000 5/20 71 0 693s 

 

There was no deadline miss as shown in table 8 and the 

arrival time values (r) influenced number of completed tasks 

which met their deadlines. 

Case 3: Multiple processors with the same arrive time. M 

represents number of processors; M = 3. 

TABLE IX 

RESULTS OF 3 PROCESSORS WITH THE SAME ARRIVE TIME 

Number of 

Iterations  

Number of 

sets and 

tasks 

Number of 

completed 

tasks 

Number of 

deadline 

miss 

time 

3000 5/23 368 0 162s 

5600 5/30 531 0 188s 

7000 5/30 1197 0 448s 

10000 5/50 1436 0 492s 

 

Table 9 shows the results of using 3 processors under the 

same conditions we used for uniprocessor in case 1; no 

deadline miss occurred and number of completed tasks was 

doubled several times. The elapsed time reduced significantly 

which improved the delay and response times. Same test was 

repeated with different arrival times for each process; the 

number of processes which met their deadline times was 

varying from run to another one due to fact that different 

values were randomly generated. 

Case 4: Same arrive time with M = 5 processors; same 

conditions in case 3 were applied. 

TABLE X 

RESULTS OF 5 PROCESSORS 

Number of 

Iterations  

Number of 

sets and 

tasks 

Number of 

completed 

tasks 

Number of 

deadline 

miss 

time 

3500 5/25 831 0 149s 

4700 5/30 1011 0 155s 

7000 5/30 1748 0 351s 

10000 5/20 2793 0 406s 

 

In the following case, the number of sets varied in each run 

and M was 7. 

Case 5: different arrive time with M = 7 

TABLE XI 

RESULTS OF 7 PROCESSORS WITH DIFFERENT ARRIVAL TIMES 

Number of 

Iterations  

Number 

of sets and 

tasks 

Number of 

completed 

tasks 

Number of 

deadline 

miss 

time 

8500 6/20 2191 0 387s 

9300 7/15 1998 0 422s 

10000 5/30 2581 0 446s 

 

The proposed algorithm was completely able to execute 

tasks as much as possible without any deadline miss. The 

following table shows a comparison analysis between the 

proposed approach and algorithm mentioned earlier in [5] on 

multiprocessor environments. In [5], the algorithm uses the 
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following equation to decide which task must be selected first; 

Ri = Ci
r / (di – t). The higher rate is the higher priority is. The 

previous equation is quite similar to the proposed approach 

except that the task with smallest rate is selected based on the 

proposed method to allow CPUs to be busy all times to avoid 

any deadline miss. In addition, the slack quantity was chosen 

instead of the remaining time.  The algorithm in [5] can be 

used only with all processes having the same arrival times 

which assumed to be “0” while the proposed algorithm can be 

used either with different arrival times or same arrival times.  

   The comparison includes the number of tasks completed 

their execution time without any deadline miss and the 

number of tasks missed their deadlines. #1 refers to the 

proposed algorithm while #2 represents the algorithm in [5]. 

The comparison was done under several conditions with the 

same number of sets, tasks and the same arrive time which 

was r = 0. 

TABLE XII 

RESULTS OF THE COMPARISON ANALYSIS 

Number of 

Iterations and 

Processors  

Number 

of sets 

and tasks 

Number of 

completed tasks 

Number of 

deadline miss 

#1 #2 #1 #2 

3000/4 5/23 780 779 0 0 

4000/5 5/15 1281 1281 0 0 

5000/6 5/30 1003 998 0 0 

7000/7 5/20 2978 2977 0 0 

10000/7 5/200 942 940 0 0 

 

Table 12 shows clearly that both approaches performed 

very well in scheduling all tasks without any deadline miss. 

Nevertheless, the proposed algorithm provided more 

completed tasks. We applied many experiments by increasing 

number of tasks and sets while maintaining same number of 

processors M which was 10, the proposed algorithm produced 

more number of tasks which met their deadlines. 

VI. CONCLUSION AND FUTURE WORK 

This paper presented a method to schedule periodic tasks to 

meet their deadlines without allowing any deadline miss to 

occur. Also the proposed algorithm keeps all available CPUs 

in the system busy at all times to schedule more tasks. It 

keeps systems stable and provides a good timely response 

time as observed in the experiments done. Several examples 

were given to demonstrate how the proposed scheme works. 

Furthermore, we conducted comparative analysis between the 

proposed algorithm and algorithm in [5]; our scheme gave 

the best results in terms of number of completed tasks which 

met their deadlines under several conditions. Furthermore, 

both methods yielded no deadline miss in all our experiments. 

For future work, we will investigate a scheme to schedule 

periodic tasks based on their average expected execution time 

instead of using the Worst Case Execution Time “WCET” 

since the knowledge of knowing the WCET in many 

applications is unpredictable. 
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