



Abstract— In various well-known location-based applications

like Google Maps® or Yelp®, a favored type of map that has been

implemented is a raster map. A raster map is a map that

represented by a bitmap image. Using a raster map yields multiple

advantages. It provides faster launching time and non-complicated

implementation as well as facile application maintenance.

However, the obvious flaw of a raster map is that it has lacked

accessing ability, which is an ability that allows a user to access a

map component such as a street, an intersection, a water way, etc.

This ability is necessary in several professional location-based

tasks. We propose a solution, called “Object-Indexing”, that

allows a traditional raster map to have accessing ability. Both

theoretical concept and actual implementation of Object-Indexing

are discussed in this article. The implementation was done by

developing a location-based application for the address

verification task, which is a professional location-based task of the

US Census Bureau.

Keywords— location-based application, raster map,

accessibility, ESRI Shapefile, human computer interaction,

interactive software.

I. INTRODUCTION

A location-based application is an application that its

contents are location-related. Thus, a map is a key feature that

any location-based application must have provided on its user

interface (UI). Good examples of location-based applications

are Google Maps®, Yelp®, The Weather Channel®, and

Expedia®. A raster map, which is a map that is implemented

using a bitmap image, has been the undisputedly first choice for

most location-based application developers since it requires less

computing power. The cost of loading a raster map on the UI is

equal to the cost of loading a bitmap image, which is not

significant given the computing power of many devices sold in

markets nowadays. Nevertheless, one major drawback of a

raster map is that it does not have an ability that allows an

application user to directly access map components. A map

component is an object/unit on the map that representing

important entity such as a street, a building, a railway, a lake,

etc. Accessing map components is essential and required in

several professional location-based tasks. One good example is

Thitivatr PatanasakPinyo1 , 1Faculty of ICT, Mahidol University, Nakhon

 Pathom, Thailand, (thitivatr.pat@mahidol.edu).

Georgi Batinov2, Kofi Whitney2, Adel Sulaiman2 and Les Miller2 ,
2Department of Computer Science, Iowa State University, USA

(batinov, kwhitney, aadel, lmiller)@iastate.edu

the address verification task, which is the task of the US Census

Bureau. For address verification task, the task executer (the user

of the application) has to be able to access a street on the map to

get the information of that street such as a street name, a street

type, or a length. This paper proposes a solution to combine

both advantages of a raster map and accessing ability together

by introducing a new approach, called “Object-Indexing”,

which can empower a traditional raster map with accessing

ability and preserves all map functions.

II. PROBLEM

Two types of maps that were always selected to implement in

a location-based application are raster map and vector map. A

raster map is implemented by using a bitmap image as a map on

the UI [1]. Whereas, a vector map is a map that is implemented

by drawing a map based on the data record, called shape record,

being read from the Shapefile [2, 3] or other sources that contain

shape records. Shapefile [2, 3] is a non-readable file that

contains multiple shape records such that each record is

corresponding to geospatial vector data (line, point, or

polygon). Shapefile is a popular resource for the development

of geographic information system (GIS) applications [4-6].

Using a Shapefile to create a vector map in location-based

application allows the map to have an indexing ability since

every map component must be read and generated from a

corresponding record in the Shapefile. However, handling a

Shapefile is not easy, especially when a Shapefile contains many

records. Chellappan [7] and Chellappan et al. [8] developed a

location-based application with a vector map. The scope of the

map in their application covered the area of Ames, a small city

of Iowa, USA. In the application, the map was drawn by reading

each shape record from the Shapefile. One major drawback that

was found is the launching time of the application. The

application took a significantly large amount of launching time

due to the overhead of reading and drawing each map

component. Furthermore, when a user operated (pan/zoom) a

map, the application had to re-draw the map by reading each

shape record again. Therefore, the user had to wait a significant

amount of time not only at the launching of the application, but

every time an operation caused the map to be re-drawn such as

pan operation or zoom operation. This is an unavoidable

disadvantage that hurts a location-based application

implementing a vector map.

Object-Indexing: A Solution to Grant Accessibility to a

Traditional Raster Map in Location-Based Application to

Accomplish a Location-Based Task

Thitivatr PatanasakPinyo
1
, Georgi Batinov

2
, Kofi Whitney

2
, Adel Sulaiman

2
 and Les Miller

2

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 5, Issue 1 (2018) ISSN 2349-1469 EISSN 2349-1477

https://doi.org/10.15242/IJCCIE.H0418106 1

III. CONCEPT AND METHODOLOGY OF OBJECT-INDEXING

The fundamental concept of Object-Indexing is to

consolidate a raster map with shape records from the Shapefile.

These shape records are keys to grant accessing ability to the

raster map. Every shape record would be read to get all

information of the shape such as a set of latitude-longitude

coordinates. An object corresponding to each shape record then

would be created to store the read information. Since the pilot

application that we implemented Object-Indexing is an

application for the address verification task, every object

created from shape record would represented a street, which is

one type of map components. A street is the only map

component that is relevant to the task because it is an

informative item required by application users (address

verifying officer). However, in the location-based application

for other tasks, objects that representing other map components

might be created according to the task’s scope, e.g., railway or

water way in a transportation-related application.

Fig. 1: Structure of Street Class

 We defined the class for street object (Fig. 1). The class

consisted of two fields, which were a street name and a set of

pairs of latitude and longitude that the street lay on. After we

completed reading every shape record from the Shapefile, we

got a collection of many street objects. Note that we created

only street objects that actually located on the map of the

application, i.e., if our application was for address verification

task in the city of Ames, Iowa, we created only street objects

representing streets in Ames rather than creating street object

for every street in USA. Next step was to abstractly combine a

raster map, which was just a normal bitmap image representing

the map, and the set of street objects. Conceptually, we can look

at the final map as a map with two layers. The bottom layer was

for the raster map. The top layer was for the set of street objects.

This concept was illustrated in Fig. 2.

Fig. 1: Concept of Object-Indexing

In Fig. 2, the bottom layer is a bitmap image representing a

map with one street, ABC St. The top layer consists of one street

object representing ABC ST. Of course, this street object was

created by reading shape records of ABC St. from the Shapefile.

The street object has a set of pairs of latitude and longitude that

ABC St. lies on. Each pair is represented by an orange oval.

According to Fig. 2, there are five pairs of latitude and longitude

that ABC St. lies on. However, the top layer that we illustrate is

only for explanation purpose. We didn’t actually draw those

ovals on the raster map, i.e., this layer is invisible.

Consequently, the question about how to bridge those two layers

in the real implementation was raised.

IV. IMPLEMENTATION OF OBJECT-INDEXING

Before discussing about the technique to bridge two layers

together, we would first describe the setup of the

implementation of Object-Indexing on a location-based

application for address verification task. We deployed the

application on Android platform. A touch-screen tablet that we

chose to deploy the application was a Google Nexus 7 (2013),

which supported location service (GPS) regardless of data

connection. The area of the address verification was the

neighborhood located next to the main campus of Iowa State

University, Ames, Iowa, USA. Since our location-based

application was for touch-screen tablet, the incident that

allowed a user to access a street is to tap right on the street on the

map. Once the user tapped, our approach first calculated the

actual latitude and longitude of the tapped point (px, py) relative

to the map where px was a horizontal distance from the left edge

of the map and py was the vertical distance from the top edge of

the map. This calculation can be done using a world file. A

world file is a text file that contains five numbers required to

transform any coordinate (x, y) on the map to the actual

coordinate of (longitude, latitude). We will not talk about the

calculation process in this paper. Each raster map must have its

corresponding world file. The latitude and longitude that we got

from calculation were the key to bridge both raster map layer

and (invisible) street objects layer together. To check whether

there was any street lay through the tapped point, we created a

square (with predefined width), called region of interest, using

the longitude and latitude as a center of the square. Thus, the

region of interest would cover the tapped point. We then visited

every street object. For each street object we visited, we

checked whether there was any coordinate (longitude, latitude)

that was inside the region of interest. If so, it meant that the

street we visited was the street that the user tapped on. We

finally displayed the information of the street on the UI,

particularly, a street name. Knowing the street name by tapping

on it was an example scenario of accessing ability. This

approach was also implemented in the study of PatanasakPinyo

[9] and PatanasakPinyo et al [10], which was about the adaptive

UI of location-based application. The diagram in Fig. 3

illustrates the work flow of Object-Indexing approach when the

user tapped on the map. The complexity of Object-Indexing is

O(nm) where n is the number of street objects and m is the size

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 5, Issue 1 (2018) ISSN 2349-1469 EISSN 2349-1477

https://doi.org/10.15242/IJCCIE.H0418106 2

of the largest set of latitude and longitude pairs that belongs to

one street object.

Fig. 3: Work Flow of Object-Indexing

Recall that when the application was started, it read every

shape record and created the corresponding street object at that

time. Every street object had been active until a user closed the

application. With this methodology, the large amount of

launching time would take place only once at starting. While the

user was using the application, he/she can pan/zoom the map

without suffering from the large overhead of map re-drawing,

particularly, panning or zooming was just to change the map

image. The amount of time for changing the map image was

equal to the loading time of a single bitmap image, which was

significantly small. Furthermore, the user had an accessing

ability via Object-Indexing all the time while he/she was using

the application.

Fig. 2: Street Accessing by Object-Indexing

Fig. 4 illustrates how Object-Indexing allows the user to

know the street information, i.e. street name, by tapping right on

the street in the map. When the user tapped on an unknown

street, Object-Indexing created a region of interest, represented

by the red square, then it displayed the street name on the UI.

Fig. 5 shows the actual series of screenshots of the application

when Object-Indexing was triggered. In Fig. 5, a user tapped on

an unknown north-south street at the top of the map. A region of

interest was drawn to cover the tapped point. Object-Indexing

applied the algorithm in Fig. 3 to detect the street. Finally,

Object-Indexing displayed the street name at the bottom-left

corner of the UI.

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 5, Issue 1 (2018) ISSN 2349-1469 EISSN 2349-1477

https://doi.org/10.15242/IJCCIE.H0418106 3

Fig. 5: A user tapped on Gray Ave

V. DISCUSSION AND CONCLUSION

We have developed Object-Indexing, which was the

approach to combine the advantages of both raster map and

accessing ability together. Object-Indexing equipped a

traditional raster map in location-based applications with

accessing ability, an ability that allowed an application user to

directly access a map component such as street. This ability was

essential and required in multiple professional tasks such as the

address verification task of US Census Bureau. Although a

vector map, which is a map that created by drawing a shape

(line, point, or polygon) according to each shape record in the

Shapefile, also supported accessing ability, it costed the

application a large amount of overhead when launching and

every time a map operation was performed. Object-Indexing

overcame vector map by reading the Shapefile only once at the

starting and creating a map component object corresponding to

each shape record being read. It completely removed a waiting

time when a map operation (pan or zoom) was done. This

approach could be implemented in any location-based

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 5, Issue 1 (2018) ISSN 2349-1469 EISSN 2349-1477

https://doi.org/10.15242/IJCCIE.H0418106 4

application that takes fast response time and accessing ability as

a top priority.

ACKNOWLEDGEMENTS

 We would like to express our profound thanks to those who

helped, advised, and supported us during the time of design,

development, pilot study, and write-up of this paper.

REFERENCES

[1] M.N. DeMers, GIS modeling in raster, New York: Wiley, 2002.

[2] E. ESRI, “Shapefile Technical Description, Jul. 1998.,” 1998.

[3] B. Stabler, “Read and write ESRI shapefiles.,” 2005;

http://ftp.auckland.ac.nz/software/CRAN/doc/packages/shapefiles.pdf.

[4] L. Anselin, et al., “GeoDa: an introduction to spatial data analysis.,”

Geographical analysis, vol. 38, no. 1, 2006, pp. 5-22.

[5] T.F. Rangel, et al., “SAM: a comprehensive application for Spatial

Analysis in Macroecology,” ECOGRAPHY, vol. 33, no. 1, 2010, pp.

46-50.

[6] J.C. Seong and J. Choi, “GEODIST: A C++ program for calculating

geodesic distances with a shapefile.,” Computers & geosciences, vol. 33,

no. 5, 2007, pp. 705-708.

[7] C. S.K., “An object-oriented approach to maps,” Computer Science,

Graduate Theses and Dissertations, Iowa State University,

http://lib.dr.iastate.edu/etd/12293, 2012.

[8] S.K. Chellappan and L. Miller, “An object oriented approach to dynamic

survey unit maps,” Proc. The 31st international conference on

computers and their applications (CATA2014), International Society for

Computers and their Applications, 2014, pp. 273 - 278.

[9] T. PatanasakPinyo, “Flattening methods for adaptive location-based

software to user abilities,” Graduate Theses and Dissertations, Iowa State

University, https://lib.dr.iastate.edu/etd/16191, 2017.

[10] T. PatanasakPinyo, et al., “Methods that flatten the user space for

individual differences in location-based surveys on portable devices,”

Proc. 1st International Conference on Computers and Their

Applications (CATA 2016), International Society for Computers and their

Applications (ISCA), 2016, pp. 65-70.

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 5, Issue 1 (2018) ISSN 2349-1469 EISSN 2349-1477

https://doi.org/10.15242/IJCCIE.H0418106 5

http://ftp.auckland.ac.nz/software/CRAN/doc/packages/shapefiles.pdf
http://lib.dr.iastate.edu/etd/12293
https://lib.dr.iastate.edu/etd/16191

