
  

 

Abstract— The present paper discusses the development of the 

modeling coupled deforming porous media which contains weak 

discontinuity. The formulation is based on the coupled solid 

deformation and fluid pressure. The spatial and time discretization is 

carried out by extended finite element method and generalized 

Newmark method, respectively.  The fluid flow normal to material 

discontinuity is modeled by enhancing the pressure field with the 

modified level set function, which is mostly used for weak 

discontinuities. Finally as a verification, a problem of material 

interface under the assumption of fully coupled system is examined. 

 

Index Terms— XFEM – Coupled Porous Media – Weak 

Discontinuity.  

I. INTRODUCTION 

Porous materials like soil, are compound of void that are in 

connection with each other. In fully saturated case, the voids 

are filled with fluid, in which leads to complex interaction 

between the phases i.e. solid and fluid phases. The fundamental 

theories of porous media, averaging theories were introduced 

by Terzaghi [1] and Biot [2]. The plasticity state of saturated 

porous media was presented by Boer and Kowalski [3] and later 

Zeinkiewicz and Shiomi [4] proposed a nonlinear algorithm of 

elasto-plasticity in deformable porous media. 

The finite element method is a robust and sufficient method 

in which is employed to many engineering problems, however 

it has the drawback of modeling discontinuities. Modeling 

stationary discontinuities requires refined meshing in order to 

reach the enough accuracy in capturing the singular fields near 

the discontinuity. Also modeling moving discontinuities such 

as crack propagation, shear banding [5] and phase changing is 

tractable only when updating the mesh arrangement in each 

time step as to conform to the line discontinuity. 

In order to capture the arbitrarily discontinuities, based on 

the concept of partition of unity[6,7] and generalized finite 

element method[8,9], the local enrichment of standard finite 

element solutions presented by Moes et al [10] and Belytchko 

and Black [11], that later called as extended finite element 

method.  

This method alleviates the difficulty of remeshing the 

solution domain proposed by FEM, significantly enhances the 

numerical solution by saving the computation time. 

In current study, the XFEM [12] is used to model the weak 

discontinuity by discretizing the weak form of governing 
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equations, i.e. linear momentum balance equation and mass 

conservation equation. Lastly a numerical example is presented 

to support the proposed theory, which is compared with XEFG 

model [13].  

II. PROCEDURE FOR PAPER SUBMISSION 

In this section, the governing equations for saturated porous  

media is presented. The momentum balance equation can be 

written as follows: 
 

. 0t B                                                                         (1) 

Where B  is the body force and t  is the total density of the 

media, and can be formulated as, 
 

(1 )t s fn n                                                               (2) 

Where s  and f  are the density of solid and fluid phase 

and n denotes the porosity. The total stress vector can be 

written in terms of the effective stress vector  , 
 

(p )fm                                                                     (3) 

And the constitutive relation is defined in terms of the 

effective stress and strain increments, 

( )d C d                                                                            (4) 

Where C  is the elastic stiffness tensor and   is the Biot’s 

constant, 
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    With 
TK   and 

SK  defined as the bulk modulus of porous 

skeleton and solid grains, respectively. The momentum balance 

relation for the water phase leads to the generalized form of the 

Darcy equation, 
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And the final form of the continuity equation for the water 

phase can be expressed as 
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Where K  is the permeability tensor, fK and s are defined 

as the bulk modulus and the Darcy velocity for the water phase, 
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respectively. The boundary conditions include the imposed 

tractions and water fluxes on the outward boundaries and the 

corresponding prescribed essential boundary conditions for 

solid displacements and water pressures, 

p pf f

u u


                                                                          

(8) 

By applying the weighted residual method to equations, (1) 

and (7), with their corresponding boundary conditions, 

equations (8). The final weak form of equations will be 

obtained. 
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u and
fp represent the variations of solid displacement 

and water pressure, respectively and act as the weighting 

functions in the proposed Galerkin weak form of the fully 

coupled saturated porous medium. The differential operators 

uD  and  
pD  are defined as, 
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III. XFEM DISCRETIZATION 

In order to model the displacement and pressure field, the 

following enriched variables are defined;       

( , ) ( ) (t) ( )( ( ) ( )) a ( )ps s pd d d

s d

P x t N x P N x x x t    
 

U(x, t) ( ) ( )us

s

N x U t                                            (12, 13) 

where ( )usN x   and ( )std

pN x   stand for the standard finite 

element shape functions for discretization of the solid 

displacements and water pressures, respectively. (t)sP  and  

ad  are the standard and enrichment degrees of freedom of 

pressure field. (x) is the modified level set function (14) 

representing the gradient discontinuity part of the pressure 

field. 
 

(x) ( ) ( )ps s ps s

s d

N x N x                             (14)  

Insertion of the enriched approximation (12, 13) into the 

weak form equations of (9) and (10) results in the complete 

discretized set of constrained equations for the fully coupled 

saturated deforming porous medium, 
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And using the Newton–Raphson algorithm, the final form of 

the discretized set of equations can be extracted as, 

 
, 1 , 1 , 1 1i n i n i n n

u sf f uR KU Q P F                                          (19) 

11
, 1 1 1( ) ( )

n nn n
f fi n n n

pf fs ff

P PU U
R Q P

t t


  


 

 
                (20) 

+
1 1 1n n n

ff f fH P F    

 
Fig. 1.  Meshing of Fully Saturated one And Double Layered Porous 

Media 

And the residual and unknown vectors can be expressed by: 
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Differentiating the residual with respect to the unknowns 

vector X, gives the Jacobian matrix for the system of equations, 
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The following fully coupled system of equations should then 

be solved at each time step to compute the vector of unknown 

increments, 
1, 1 , 1 1, 1[ ] 0i n i n i nR R J dX                                            (23) 

 

In which 
, 1i nR 

  is given in (21), (22) and is computed as 

following: 
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In above equation, variable 
nP   is defined as the value of 

converged solution from the last time step of analysis: 
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Then, the unknowns vector is updated at each iteration until the 

required convergence criterion is satisfied: 
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IV. NUMERICAL RESULTS 

1) One Layer Saturated Porous Media 

A consolidation analysis of a saturated porous media is 

presented to qualify the finite element model accuracy. The 

proposed model geometry and boundary conditions as shown in 

Fig.1 are the same as the model of double layer porous media. 

And the mechanical properties of the media, are similar to the 

upper sub layer of the following example, as presented in table. 

1.  The consolidation at the surface of centerline, Fig. 2 and the 

variation in pressure at mid-height of centerline, Fig. 3 are 

presented and compared with Samimi and Pak [14].  
 

2) Double layer saturated porous media 

   In order to testify the utility of the proposed method, a double 

layered porous media is loaded according to the Fig. 1. The 

media specimen is 1m and 6m width with finite boundary to 

eliminate the effects of the infinite boundary problems and the 

modeled geometry is half of real one as a result of symmetry of 

loading to decrease the calculation time. The mechanical 

properties of two layers are presented in table. 1. 
 

TABLE 1  

MATERIAL PROPERTIES 

7 210 m  k (Intrinsic  permeability), upper sub layer 

(
710

/4)
2m  k (Intrinsic permeability), lower sublayer 

100KPa E   (Young’s Modulus) , upper sub layer 
200KPa E   (Young’s Modulus) , lower sub layer 

310 .Pa s
 

f  (Fluid Viscosity) 

10 KP 
w (Specific Weight of Water) 

0.3    (Poisson’s Ratio) 
 

 

The materials are different in stiffness and permeability. In 

which the Young’s modulus and permeability of lower layer is 

double and a quarter of upper layer respectively. The other 

material properties are equal for whole the media. The natural  

boundary conditions are applied as follows: a constant strip 

load of 1000 KN to the length of 1m applied to the top edge of 

the media as shown in Fig. 1. and the drainage is permitted 

only at the top edge while the others are assumed to be 

impermeable. The constraints applied to the model is limiting 

the displacement in x direction for the right, left and bottom 

edges and the bottom edge for y direction. 

The material interface imposes a weak discontinuity in pore 

pressure field. In which there is a jump in the gradient of 

pressure normal to the discontinuity line. The gradient of 

pressure in normal direction across the height of sample is 

plotted in Fig. 5. for last time step. The results are compared 

with the Goudarzi and Mohammadi [13] that is based on XEFG 

method. As shown in Fig. 4. the discontinuity in gradient of 

pressure (in other words the discontinuity in fluid flow) 

vanishes as getting far from the loading points. In fact this is 

the consequence of lack fluid flow in far field. Finally the 

variation of pore pressure along the height of the media in 

centerline is computed as in Fig. 6. in which displays 

acceptable accordance with the comparing model [13]. 

 

 
Fig.  2. Settlements At The Surface Of Centerline 

 

 
Fig. 3. Water Pressure Distribution At Mid-Height Of Centerline 
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Fig. 4. Values of Normal Gradient of Pressure at Integration Points 

(KPa/m) 

 

 
Fig. 5. Variations Of Water Pressure Gradients Along The Soil Height 

For The Last Time Step Of The Analysis 

 
Fig. 6. Pore Water Pressure Distribution Along The Column Height 

V. CONCLUSION 

In this paper extended finite element method is utilized for 

modeling weak discontinuities in saturated porous media. This 

theory proved to be a sufficient method to capture the weak 

discontinuities. And helps to model the discontinuities with 

acceptable accuracy without necessity of implementing refined 

meshing.  
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