



Abstract—In this paper, we explore an important problem in

mobile and wireless sensor networks, namely the Base Station

Placement Problem. In this problem, we place a given number of base

stations in a two dimensional convex region. Each of the base stations

have equal radius of coverage, and it is required that the base stations

be placed in such a way as to minimize the common coverage radius of

all the base stations, while having each point in the convex region to

be covered by at least one base station. Simply put, the problem is to

completely cover the given convex region with a given number of

equal radius circles, while minimizing that radius. We then settle on

the instance of non-uniform distribution of sensor nodes and further

present a new method to place base stations in this kind of scenario,

employing a k-dimensional tree and a density-distance minimum

spanning tree, we discuss its implementation, followed by analysis of

the both the time performance of the algorithm, and of the quality of

results obtained when run on different data sets while varying the

algorithm’s parameters. The experimental results are encouraging.

Index Terms— Sensors, base station, kd-tree, and load balancing.

I. INTRODUCTION

Advances in electronics and wireless communication

technologies, has enabled the development of low cost and low

power sensor nodes that are small in size and can communicate

in short distances [1]. These sensor nodes, which consist of

sensory, data processing and communication components, use

the idea of sensor networks based on a collaborative effort of a

large number of nodes. Sensor nodes provide vast

improvements over traditional sensors, which can be deployed

in two ways. Sensors can be positioned far away from the event

of interest. This approach, known as sense perception, large

sensors use complex techniques to distinguish environ-mental

noise from the targets. Sensors that are only capable of sensing

are deployed. The positions of these sen-sors are done

arbitrarily in the area of interest. They transmit data of the

sensed phenomenon to central nodes where computations are

performed on the data.

A Wireless Sensor Network is composed of a large number

of sensor nodes, the position of the nodes need not be

predetermined, and can be distributed randomly in inaccessible

or disaster zones. These sensors are unattended, and single use,

Manuscript received January 30, 2016.

D.R. Edla is with the National Institute of Technology Goa, INDIA

V.N. Kuppili is with the National Institute of Technology Goa, INDIA

R. Dharavath is with the Indian School of Mines Dhanbad, INDIA

S. Kurimilla is with the Veegdevi Degree and PG College, INDIA

and last as long as there is a supply of energy. This means that

energy consumption must be managed well in order to

maximize the life of the sensors [2]. Other components of a

wireless sensor network include:

Sink: This is the the destination of all the data collected by

the sensor nodes, there are generally very few such base

stations, and may or may not cover the entire area where the

sensors are deployed. In the latter case, the data collected by the

sensors need to be routed appropriately through the network in

order to reach the base station.

Gateway: A concentration node, whose sole purpose is to

receive data from sensor nodes, and aggregate it and forward it

to the base station. It does not perform any sensory functions,

and only has communication and processing components.

Some of the major challenges in such networks include:

Topology: Nodes may be deployed and may fail frequently.

The network must adapt to failure of nodes and changing

conditions in the network.

Energy: Tiny sensors are limited in their energy supply and

their bandwidth. This necessitates that the entire

communication protocol stack used in the network must be

energy-aware, and must work to maximize the life of the sensor

nodes. The issues related to physical and link layers are

generally common for all kinds of sensor applications [3].

Wireless sensor networks have been applied in several places

including:

Environmental monitoring, which is carried out off the coast

of Maine on Great Duck island by means of a network called

Berkeley Motes. This provides a nonin-vasive method and

provides good granularity in data collection [4].

Human behavior monitoring, in the smart kindergarten

project at UCLA, which allowed objects and toys with sensors

to allows unobtrusive teacher monitoring [5].

DARPA’s self healing minefield, a self organizing sensor

network where peer-to-peer communication between anti-tank

mines is used to respond to attacks, and compensate for

breaches in the minefield [6].

An important problem in mobile networks is covering the

maximum possible area with the minimum number of towers.

In this way, it is possible to formulate a problem, given a

convex polygonal region which we want to cover completely,

and a given number of base stations, we want to find the radius

and positions of all the base stations which minimizes the

number radii of the base stations while covering the entire area

of the polygon. The base station is expected to communicate

Load balancing in Wireless Sensor Networks by Optimal

 Placement of Base Stations using kd-Tree

Damodar Reddy E, Venkatanareshbabu K, Ramesh Dharavath, and Sreedhar Kurumilla

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 3, Issue 1 (2016) ISSN 2349-1469 EISSN 2349-1477

http://dx.doi.org/10.15242/IJCCIE.IAE0316010 170

with any nodes that exist within it’s coverage area, and this way

any nodes existing within the polygon can communicate with at

least one base station at any given location.

We will attempt to solve a variation of this problem. In this

variation, there is no polygonal region provided, however a list

of nodes (which may be cellphones or sensors) to be covered

completely using a fixed number of base stations, while

equalizing the load under each base station.

Input:

P : The set of all the points corresponding to the nodes to be

covered. k: The number of base stations to be placed.

Fig. 1: Illustration of our Problem

Expected Output:

B: A set of k points, and each bi; 8i, 0 < i k represents the final

position of the ith base station.

R: A set of k real numbers, and each ri; 8i, 0 < i k represents the

radius of coverage of the ith base station.

Constraint:

Every point in B is within the coverage area of at least one base

station.

A brief survey on existing algorithms of this problem:

The algorithm, proposed by Das et al [7] is an iterative

algorithm that makes use of the voronoi diagram and it is

mainly effective for a small number of base stations and for

square of triangular regions. The input parameters of this

algorithm are 1) a two dimensional convex polygon, and the

corresponding set of points P contained in it. 2) k, the number

of base stations to be placed and 3) t, the cutoff value of the k

dimensional tree. The initial positions of the base stations is not

provided, and assumed to arbitrary. The algorithm’s stopping

condition depends on the fact the decreases every iteration until

it reaches optimal, at which point it will not show any

improvement. An additional refinement step can be added, that

if a base station get too close to the boundary of the polygon,

then it should be moved to the centroid of the polygon [8]. This

is because half the coverage area of the base station would

otherwise be wasted for points outside the polygon. The worst

case time complexity is O(n + k log(k)) where n is the number

of edges of [7]. The following figures depict this approach

based on Voronoi disgram.

Fig. 2: The Empty Polygonal Region

Fig. 3: The Initial Base Station Placement

Fig. 4: The Voronoi Diagram With Voronoi Polygons

Fig. 5: New Position of the Base Station

The main drawback of this algorithm is: The value of k is given

as an input, but taking too few or too many base stations might

adversely affect the network in practice. The algorithm does

not stipulate the decision of which base station to communicate

with in areas covered by more than one base station.

We now discuss a method for seeding the k-means clustering

algorithm from [9]. The k dimensional tree and ideas of using

the densities of the leaf nodes in our algorithm have been

derived from this method. This method is a modification of

Katsavounidis’ algorithm, to choose K seeds for the K-means

algorithm [9]. The main idea behind this algorithm is as

follows:

1. Divide the given set of points into buckets. Calculate

their densities and rank them in decreasing order.

2. Choose the densest bucket and place the first base

station there.

3. The next base station should be dense and as far as

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 3, Issue 1 (2016) ISSN 2349-1469 EISSN 2349-1477

http://dx.doi.org/10.15242/IJCCIE.IAE0316010 171

possible from the current base station.

4. After 2 base stations are selected, the subsequent base

stations should be dense and as far away from the

existing base stations as possible.

When the desired number of base stations is reached – stop.

This algorithm can be re-run after discarding 20 percent of

the leaf buckets which have lowest density to protect it from

outliers. The main point of focus is how the base station

positions are selected. This method provides a fast and

computationally inexpensive way to do so.

II. PROPOSED ALGORITHM

Our proposed solution exploits the density similarity of

neighboring points in order to reduce the size of the size of the

problem set, so as to drastically improve the performance of the

algorithm. A k-dimensional tree, a construct typically used for

fast nearest neighbor searches [10], is used, in our method, to

partition the set of input points into a set of ’buckets’. Wherein

each bucket contains roughly the same number of points. There

are variations, however, in the size of the buckets caused by the

unpredictable nature of the input data, and the choice of the

cutoff value in the k-dimensional tree creation. As we will see

later, the algorithm shows considerable sensitivity to the

presence of outliers in the data set and the choice of cutoff (or

threshold) value.

Once we have the set of buckets, we reduce each bucket into

a single point represent-ing that bucket, using the mean point

of the bucket, (calculated using the mean coordinate values

along the x and y axes, respectively). We then proceed the

calculate the density of the bucket using the volume of the

bounding rectangle, and the number of points in the bucket.

After this, we proceed to cluster these representative points

into k clusters. To do so, we construct a special graph. This

graph, whose number of vertices equals the number of buckets,

and wherein each vertex corresponds to a specific bucket and

its representative point, is a weighted complete graph. The

weight of the edge connecting each pair of vertices is equal to

the product of the Euclidean distance between the two

representative points corresponding to the vertices, with the

base-2 logarithm of the sum of the densities of the two buckets

corresponding to the two vertices.

The idea behind using density in the complete graph stems

from the idea, that in small but densely populated areas of the

data set, it would be counterproductive to put a single base

station to cover the entire area as it would defeat the purpose of

load balancing the base station, a similar argument goes for

sparely populated areas, where it does not make sense to place a

base station to cover only a handful of nodes. Adding the

density mea-sure to the graph, pushes densely populated areas

further from each other, and sparsely populated areas closer,

we that we can get a more desirable solution.

After that, we computer the minimum spanning tree of the

graph, using a standard algorithm. A minimum spanning tree

allows us to easily partition a graph into any desired number of

sub-graphs easily, simply by the removal of edges numbering

one less than the desired number of sub-graphs. We then

proceed to remove the k 1 heaviest edges of the minimum

spanning tree, which gives us k connected components. Each of

these connected components corresponds to a bucket in the

final solution.

We then take each connected component from the previous

step, and merge the buckets corresponding to each vertex in the

component. This way, we now have k buckets. We proceed to

find the mean point of each bucket, and the maximum distance

between the mean and any point in that bucket. The mean point

is a base station, the maximum distance between the base

station and all the members of its bucket is the radius of

coverage of that base station.

The pseudo code of the algorithm is as follows.

Input:

P : The set of all the points corresponding to the nodes to be

covered.

k: The number of base stations to be placed.

t: the cutoff value of the k dimensional tree.

Generate and return the leaf nodes of the k-dimensional tree:

– Let the set of buckets U =

– Add B to the set of buckets.

– Repeat until the size of every bucket bi is less than or equal to

t

– Select a bucket bk from B, whose size is more than t

– Create two buckets ba and bb, both empty sets.

– If m is the median of bk, set ba as the list of elements from bk

which are less than m, and set bb as the list of elements from bk

which are greater than m.

– Put m in the smaller of ba and bb.

– Insert ba and bb into U

– Return U

Calculate D, where each di equals the density of the ith bucket:

– Let wx be the difference between the maximum and minimum

x coordinate in the given bucket.

– Let wy be the difference between the maximum and minimum

y coordinate in the given bucket.

– Let l be the number of items in the given bucket.

– Set di = wx+wy
l+1

Calculate C, where each ci is the arithmetic mean point of bi

Generate a complete graph G having k vertices, where the

weight of edge (i; j) equals log2(di+dj)

Calculate M, the minimum spanning tree of G Remove the

heaviest k1 edges from M

Create S where each si = ; 1 < i k

Find the connected components in m, and for each vertex vi in

M

– If vi belongs to connected component j, append bi to sj

Let B = bi; 1 < i k where each bi = mean_point(si)

Let R = ri; i < i k where each ri = max(dist(bi; sij); 1 < j size(si))

Return B and R

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 3, Issue 1 (2016) ISSN 2349-1469 EISSN 2349-1477

http://dx.doi.org/10.15242/IJCCIE.IAE0316010 172

Fig. 6: The Flowchart of our Algorithm

III. EXPERIMENTAL ANALYSIS

In this chapter we present some simulations on synthetic data

sets. The data sets considered are uniformly distributed,

non-uniformly distributed well separated and non-uniformly

distributed data sets. First we test the algorithm on uniformly

distributed data. The data set considered contains 1000 sensor

nodes uniformly distributed in a rectangular region. The

number of base stations to be placed was input as 16, the

threshold value for each bucket was 64. The second data set

considered is non-uniformly distributed and well-separated.

The data set considered contains 60 sensor nodes uniformly

distributed in a rectangular region. The number of base stations

to be placed was input as 2. The third data set considered is also

non-uniformly distributed and well-separated. The data set

considered contains 79 sensor nodes uniformly distributed in a

rectangular region. Number of base stations to be placed was

input as 3. The final data set considered is non-uniformly

distributed and is not well-separated. The data set considered

contains 79 sensor nodes uniformly distributed in a rectangular

region. Number of base stations to be placed was input as 3.

The output and clustering produced by the algorithm depends

on 2 factors:

1. The algorithm requires a reasonably accurate value of the

number of base stations to be placed.

2. The algorithm is sensitive to the threshold value of the

buckets.

This indicates that the algorithm can be modified to

automatically calculate the value of k by taking different values

and checking the subsequent clustering with a fitness function.

Also the cluster shape depends on the density of buckets which

is in turn dependent on the threshold value of the buckets. The

threshold value decides when to stop dividing the current

bucket into more buckets. The two variables taken together can

be varied simultaneously to produce a 3-D graph. This is a

possible avenue to improve the existing algorithm by

automating the number of base stations to be placed. Some of

the experimental results are shown below.

(a) Input to the algorithm - the distribution of the sensor nodes and the

convex region

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 3, Issue 1 (2016) ISSN 2349-1469 EISSN 2349-1477

http://dx.doi.org/10.15242/IJCCIE.IAE0316010 173

(b) The k-d tree buckets

(c) The final clusters formed

(d) The solution obtained after running the algorithm.

Fig. 7: Result for uniformly distributed data of 1000 nodes, k = 16,

threshold = 64

(a) Input to the algorithm - the distribution of the sensor nodes and the

convex region.

(b) The k-d tree buckets

(c) The final clusters formed.

(d) The solution obtained after running the algorithm.

Fig. 8: Result for non-uniformly distributed data of 79 nodes k = 3,

threshold = 2.

IV. CONCLUSION

In this paper, we have introduced the base station problem.

After that, we discussed an existing and efficient algorithm for

solving the problem. Subsequently, we explored some the

drawbacks and areas of improvement in that algorithm, along

with some of the challenges that would be encountered in doing

so. We then proposed our solution, and obtained fairly positive

results with a relatively low computational overhead.

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 3, Issue 1 (2016) ISSN 2349-1469 EISSN 2349-1477

http://dx.doi.org/10.15242/IJCCIE.IAE0316010 174

We experimented with different data sets to see how the

algorithm’s behavior changes according to the input data. The

algorithm was found to produce correct clusters for reasonable

values of k. We also observed that the algorithm is sensitive to

the threshold value of the buckets. An interesting observation

was that for uniformly distributed data the algorithm works

best when the threshold value is a power of 2. This is because

the densities are scaled using a logarithmic function to the base

of 2.

The threshold value decides the shape of the buckets which

in turn decides the shape of the final clusters. A possible

improvement is to automate the value of k by running the

algorithm for a range of values and checking the subsequent

clustering with the help of an objective function.

REFERENCES

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless

sensor networks: a survey,” Computer Networks, vol. 38, no. 4, pp. 393 –

422, 2002

http://dx.doi.org/10.1016/S1389-1286(01)00302-4
[2] D. Wajgi and N. V. Thakur, “Load balancing algorithms in wireless sensor

network: A survey,” International Journal of Computer Networks and

Wireless Communica-tions (IJCNWC), vol. 2, pp. 456–460, 2012.

[3] K. Akkaya and M. Younis, “A survey on routing protocols for wireless

sensor networks,” Ad Hoc Networks, vol. 3, no. 3, pp. 325 – 349, 2005.

http://dx.doi.org/10.1016/j.adhoc.2003.09.010
[4] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson,

“Wireless sensor networks for habitat monitoring,” in Proceedings of the 1st

ACM Intl. Workshop on Wireless Sensor Networks and Applications, ser.

WSNA ’02. New York, NY, USA: ACM, 2002, pp. 88–97.

http://dx.doi.org/10.1145/570738.570751
[5] M. Srivastava, R. Muntz, and M. Potkonjak, “Smart kindergarten:

Sensor-based wireless networks for smart developmental problem-solving

environments,” in Proceedings of the 7th Intl. Conference on Mobile

Computing and Networking, ser. MobiCom ’01. USA, 2001, pp. 132-138.

http://dx.doi.org/10.1145/381677.381690
[6] D. Puccinelli and M. Haenggi, “Wireless sensor networks: applications and

chal-lenges of ubiquitous sensing,” Circuits and Systems Magazine, IEEE,

vol. 5, no. 3, pp. 19–31, 2005.

http://dx.doi.org/10.1109/MCAS.2005.1507522
[7] G. K. Das, S. Das, S. C. Nandy, and B. P. Sinha, “Efficient algorithm for

placing a given number of base stations to cover a convex region,” Journal of

Parallel and Distributed Computing, vol. 66, no. 11, pp. 1353 – 1358, 2006.

http://dx.doi.org/10.1016/j.jpdc.2006.05.004
[8] F. Aurenhammer, “Voronoi diagrams-a survey of a fundamental geometric

data structure,” ACM Computing Surveys (CSUR), vol. 23, no. 3, pp.

345–405, 1991.

http://dx.doi.org/10.1145/116873.116880
[9] S. J. Redmond and C. Heneghan, “A method for initialising the k-means

clustering algorithm using kd-trees,” Pattern Recognition Letters, vol. 28,

no.8, pp. 965–973, 2007.

http://dx.doi.org/10.1016/j.patrec.2007.01.001
[10] P. N. Yianilos, “Data structures and algorithms for nearest neighbor search

in general metric spaces,” in SODA, vol. 93, no. 194, 1993, pp. 311–321.

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 3, Issue 1 (2016) ISSN 2349-1469 EISSN 2349-1477

http://dx.doi.org/10.15242/IJCCIE.IAE0316010 175

http://dx.doi.org/10.1016/S1389-1286(01)00302-4
http://dx.doi.org/10.1016/S1389-1286(01)00302-4
http://dx.doi.org/10.1016/S1389-1286(01)00302-4
http://dx.doi.org/10.1016/S1389-1286(01)00302-4
http://dx.doi.org/10.1016/j.adhoc.2003.09.010
http://dx.doi.org/10.1016/j.adhoc.2003.09.010
http://dx.doi.org/10.1016/j.adhoc.2003.09.010
http://dx.doi.org/10.1145/570738.570751
http://dx.doi.org/10.1145/570738.570751
http://dx.doi.org/10.1145/570738.570751
http://dx.doi.org/10.1145/570738.570751
http://dx.doi.org/10.1145/381677.381690
http://dx.doi.org/10.1145/381677.381690
http://dx.doi.org/10.1145/381677.381690
http://dx.doi.org/10.1145/381677.381690
http://dx.doi.org/10.1145/381677.381690
http://dx.doi.org/10.1109/MCAS.2005.1507522
http://dx.doi.org/10.1109/MCAS.2005.1507522
http://dx.doi.org/10.1109/MCAS.2005.1507522
http://dx.doi.org/10.1109/MCAS.2005.1507522
http://dx.doi.org/10.1016/j.jpdc.2006.05.004
http://dx.doi.org/10.1016/j.jpdc.2006.05.004
http://dx.doi.org/10.1016/j.jpdc.2006.05.004
http://dx.doi.org/10.1016/j.jpdc.2006.05.004
http://dx.doi.org/10.1145/116873.116880
http://dx.doi.org/10.1145/116873.116880
http://dx.doi.org/10.1145/116873.116880
http://dx.doi.org/10.1145/116873.116880
http://dx.doi.org/10.1016/j.patrec.2007.01.001
http://dx.doi.org/10.1016/j.patrec.2007.01.001
http://dx.doi.org/10.1016/j.patrec.2007.01.001
http://dx.doi.org/10.1016/j.patrec.2007.01.001

