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Abstract—In this paper, we explore an important problem in 

mobile and wireless sensor networks, namely the Base Station 

Placement Problem. In this problem, we place a given number of base 

stations in a two dimensional convex region. Each of the base stations 

have equal radius of coverage, and it is required that the base stations 

be placed in such a way as to minimize the common coverage radius of 

all the base stations, while having each point in the convex region to 

be covered by at least one base station. Simply put, the problem is to 

completely cover the given convex region with a given number of 

equal radius circles, while minimizing that radius. We then settle on 

the instance of non-uniform distribution of sensor nodes and further 

present a new method to place base stations in this kind of scenario, 

employing a k-dimensional tree and a density-distance minimum 

spanning tree, we discuss its implementation, followed by analysis of 

the both the time performance of the algorithm, and of the quality of 

results obtained when run on different data sets while varying the 

algorithm’s parameters. The experimental results are encouraging. 

 

Index Terms— Sensors, base station, kd-tree, and load balancing.  

 

I. INTRODUCTION 

Advances in electronics and wireless communication 

technologies, has enabled the development of low cost and low 

power sensor nodes that are small in size and can communicate 

in short distances [1]. These sensor nodes, which consist of 

sensory, data processing and communication components, use 

the idea of sensor networks based on a collaborative effort of a 

large number of nodes. Sensor nodes provide vast 

improvements over traditional sensors, which can be deployed 

in two ways. Sensors can be positioned far away from the event 

of interest. This approach, known as sense perception, large 

sensors use complex techniques to distinguish environ-mental 

noise from the targets. Sensors that are only capable of sensing 

are deployed. The positions of these sen-sors are done 

arbitrarily in the area of interest. They transmit data of the 

sensed phenomenon to central nodes where computations are 

performed on the data. 

A Wireless Sensor Network is composed of a large number 

of sensor nodes, the position of the nodes need not be 

predetermined, and can be distributed randomly in inaccessible 

or disaster zones. These sensors are unattended, and single use, 
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and last as long as there is a supply of energy. This means that 

energy consumption must be managed well in order to 

maximize the life of the sensors [2]. Other components of a 

wireless sensor network include: 

Sink: This is the the destination of all the data collected by 

the sensor nodes, there are generally very few such base 

stations, and may or may not cover the entire area where the 

sensors are deployed. In the latter case, the data collected by the 

sensors need to be routed appropriately through the network in 

order to reach the base station.  

Gateway: A concentration node, whose sole purpose is to 

receive data from sensor nodes, and aggregate it and forward it 

to the base station. It does not perform any sensory functions, 

and only has communication and processing components. 

Some of the major challenges in such networks include: 

Topology: Nodes may be deployed and may fail frequently. 

The network must adapt to failure of nodes and changing 

conditions in the network.  

Energy: Tiny sensors are limited in their energy supply and 

their bandwidth. This necessitates that the entire 

communication protocol stack used in the network must be 

energy-aware, and must work to maximize the life of the sensor 

nodes. The issues related to physical and link layers are 

generally common for all kinds of sensor applications [3]. 

Wireless sensor networks have been applied in several places 

including: 

Environmental monitoring, which is carried out off the coast 

of Maine on Great Duck island by means of a network called 

Berkeley Motes. This provides a nonin-vasive method and 

provides good granularity in data collection [4].  

Human behavior monitoring, in the smart kindergarten 

project at UCLA, which allowed objects and toys with sensors 

to allows unobtrusive teacher monitoring [5].  

DARPA’s self healing minefield, a self organizing sensor 

network where peer-to-peer communication between anti-tank 

mines is used to respond to attacks, and compensate for 

breaches in the minefield [6]. 

An important problem in mobile networks is covering the 

maximum possible area with the minimum number of towers. 

In this way, it is possible to formulate a problem, given a 

convex polygonal region which we want to cover completely, 

and a given number of base stations, we want to find the radius 

and positions of all the base stations which minimizes the 

number radii of the base stations while covering the entire area 

of the polygon. The base station is expected to communicate 
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with any nodes that exist within it’s coverage area, and this way 

any nodes existing within the polygon can communicate with at 

least one base station at any given location. 

We will attempt to solve a variation of this problem. In this 

variation, there is no polygonal region provided, however a list 

of nodes (which may be cellphones or sensors) to be covered 

completely using a fixed number of base stations, while 

equalizing the load under each base station.  

Input: 

P : The set of all the points corresponding to the nodes to be 

covered. k: The number of base stations to be placed. 

 
Fig. 1: Illustration of our Problem 

Expected Output: 

B: A set of k points, and each bi; 8i, 0 < i k represents the final 

position of the ith base station.  

R: A set of k real numbers, and each ri; 8i, 0 < i k represents the 

radius of coverage of the ith base station. 

Constraint: 

Every point in B is within the coverage area of at least one base 

station.  
 

A brief survey on existing algorithms of this problem: 
 

The algorithm, proposed by Das et al [7] is an iterative 

algorithm that makes use of the voronoi diagram and it is 

mainly effective for a small number of base stations and for 

square of triangular regions. The input parameters of this 

algorithm are 1) a two dimensional convex polygon, and the 

corresponding set of points P contained in it. 2) k, the number 

of base stations to be placed and 3)  t, the cutoff value of the k 

dimensional tree. The initial positions of the base stations is not 

provided, and assumed to arbitrary.  The algorithm’s stopping 

condition depends on the fact the decreases every iteration until 

it reaches optimal, at which point it will not show any 

improvement. An additional refinement step can be added, that 

if a base station get too close to the boundary of the polygon, 

then it should be moved to the centroid of the polygon [8]. This 

is because half the coverage area of the base station would 

otherwise be wasted for points outside the polygon. The worst 

case time complexity is O(n + k log(k)) where n is the number 

of edges of  [7]. The following figures depict this approach 

based on Voronoi disgram. 

 
Fig. 2: The Empty Polygonal Region 

 
Fig. 3: The Initial Base Station Placement 

 
Fig. 4: The Voronoi Diagram With Voronoi Polygons 

 
Fig. 5: New Position of the Base Station 

The main drawback of this algorithm is: The value of k is given 

as an input, but taking too few or too many base stations might 

adversely affect the network in practice. The algorithm does 

not stipulate the decision of which base station to communicate 

with in areas covered by more than one base station. 

We now discuss a method for seeding the k-means clustering 

algorithm from [9]. The k dimensional tree and ideas of using 

the densities of the leaf nodes in our algorithm have been 

derived from this method. This method is a modification of 

Katsavounidis’ algorithm, to choose K seeds for the K-means 

algorithm [9]. The main idea behind this algorithm is as 

follows: 

1. Divide the given set of points into buckets. Calculate 

their densities and rank them in decreasing order.  

2. Choose the densest bucket and place the first base 

station there.  

3. The next base station should be dense and as far as 
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possible from the current base station.  

4. After 2 base stations are selected, the subsequent base 

stations should be dense and as far away from the 

existing base stations as possible.  

When the desired number of base stations is reached – stop. 

This algorithm can be re-run after discarding 20 percent of 

the leaf buckets which have lowest density to protect it from 

outliers. The main point of focus is how the base station 

positions are selected. This method provides a fast and 

computationally inexpensive way to do so. 

II. PROPOSED ALGORITHM 

Our proposed solution exploits the density similarity of 

neighboring points in order to reduce the size of the size of the 

problem set, so as to drastically improve the performance of the 

algorithm. A k-dimensional tree, a construct typically used for 

fast nearest neighbor searches [10], is used, in our method, to 

partition the set of input points into a set of ’buckets’. Wherein 

each bucket contains roughly the same number of points. There 

are variations, however, in the size of the buckets caused by the 

unpredictable nature of the input data, and the choice of the 

cutoff value in the k-dimensional tree creation. As we will see 

later, the algorithm shows considerable sensitivity to the 

presence of outliers in the data set and the choice of cutoff (or 

threshold) value. 

Once we have the set of buckets, we reduce each bucket into 

a single point represent-ing that bucket, using the mean point 

of the bucket, (calculated using the mean coordinate values 

along the x and y axes, respectively). We then proceed the 

calculate the density of the bucket using the volume of the 

bounding rectangle, and the number of points in the bucket. 

After this, we proceed to cluster these representative points 

into k clusters. To do so, we construct a special graph. This 

graph, whose number of vertices equals the number of buckets, 

and wherein each vertex corresponds to a specific bucket and 

its representative point, is a weighted complete graph. The 

weight of the edge connecting each pair of vertices is equal to 

the product of the Euclidean distance between the two 

representative points corresponding to the vertices, with the 

base-2 logarithm of the sum of the densities of the two buckets 

corresponding to the two vertices.  

The idea behind using density in the complete graph stems 

from the idea, that in small but densely populated areas of the 

data set, it would be counterproductive to put a single base 

station to cover the entire area as it would defeat the purpose of 

load balancing the base station, a similar argument goes for 

sparely populated areas, where it does not make sense to place a 

base station to cover only a handful of nodes. Adding the 

density mea-sure to the graph, pushes densely populated areas 

further from each other, and sparsely populated areas closer, 

we that we can get a more desirable solution. 

After that, we computer the minimum spanning tree of the 

graph, using a standard algorithm. A minimum spanning tree 

allows us to easily partition a graph into any desired number of 

sub-graphs easily, simply by the removal of edges numbering 

one less than the desired number of sub-graphs. We then 

proceed to remove the k 1 heaviest edges of the minimum 

spanning tree, which gives us k connected components. Each of 

these connected components corresponds to a bucket in the 

final solution. 

We then take each connected component from the previous 

step, and merge the buckets corresponding to each vertex in the 

component. This way, we now have k buckets. We proceed to 

find the mean point of each bucket, and the maximum distance 

between the mean and any point in that bucket. The mean point 

is a base station, the maximum distance between the base 

station and all the members of its bucket is the radius of 

coverage of that base station. 

The pseudo code of the algorithm is as follows. 

Input: 

P : The set of all the points corresponding to the nodes to be 

covered.  

k: The number of base stations to be placed.  

t: the cutoff value of the k dimensional tree. 
 

Generate and return the leaf nodes of the k-dimensional tree:  
 

– Let the set of buckets U =  
 

– Add B to the set of buckets.  
 

– Repeat until the size of every bucket bi is less than or equal to 

t  
 

– Select a bucket bk from B, whose size is more than t  
 

– Create two buckets ba and bb, both empty sets.  
 

– If m is the median of bk, set ba as the list of elements from bk 

which are less than m, and set bb as the list of elements from bk 

which are greater than m.  
 

– Put m in the smaller of ba and bb.  
 

– Insert ba and bb into U  
 

– Return U 
 

Calculate D, where each di equals the density of the ith bucket:  
 

– Let wx be the difference between the maximum and minimum 

x coordinate in the given bucket.  
 

– Let wy be the difference between the maximum and minimum 

y coordinate in the given bucket.  
 

– Let l be the number of items in the given bucket. 
 

– Set di = wx+wy
l+1  

 

Calculate C, where each ci is the arithmetic mean point of bi  
 

Generate a complete graph G having k vertices, where the 

weight of edge (i; j) equals log2(di+dj) 
 

Calculate M, the minimum spanning tree of G Remove the 

heaviest k1 edges from M 
 

Create S where each si = ; 1 < i   k  
 

Find the connected components in m, and for each vertex vi in 

M  
 

– If vi belongs to connected component j, append bi to sj  
 

Let B = bi; 1 < i   k where each bi = mean_point(si)  
 

Let R = ri; i < i k where each ri = max(dist(bi; sij); 1 < j size(si))  
 

Return B and R 
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Fig. 6: The Flowchart of our Algorithm 

III. EXPERIMENTAL ANALYSIS 

In this chapter we present some simulations on synthetic data 

sets. The data sets considered are uniformly distributed, 

non-uniformly distributed well separated and non-uniformly 

distributed data sets. First we test the algorithm on uniformly 

distributed data. The data set considered contains 1000 sensor 

nodes uniformly distributed in a rectangular region. The 

number of base stations to be placed was input as 16, the 

threshold value for each bucket was 64. The second data set 

considered is non-uniformly distributed and well-separated. 

The data set considered contains 60 sensor nodes uniformly 

distributed in a rectangular region. The number of base stations 

to be placed was input as 2. The third data set considered is also 

non-uniformly distributed and well-separated. The data set 

considered contains 79 sensor nodes uniformly distributed in a 

rectangular region. Number of base stations to be placed was 

input as 3. The final data set considered is non-uniformly 

distributed and is not well-separated. The data set considered 

contains 79 sensor nodes uniformly distributed in a rectangular 

region. Number of base stations to be placed was input as 3. 

The output and clustering produced by the algorithm depends 

on 2 factors: 

1. The algorithm requires a reasonably accurate value of the 

number of base stations to be placed.  

2. The algorithm is sensitive to the threshold value of the 

buckets. 

This indicates that the algorithm can be modified to 

automatically calculate the value of k by taking different values 

and checking the subsequent clustering with a fitness function. 

Also the cluster shape depends on the density of buckets which 

is in turn dependent on the threshold value of the buckets. The 

threshold value decides when to stop dividing the current 

bucket into more buckets. The two variables taken together can 

be varied simultaneously to produce a 3-D graph. This is a 

possible avenue to improve the existing algorithm by 

automating the number of base stations to be placed. Some of 

the experimental results are shown below. 

 
(a) Input to the algorithm - the distribution of the sensor nodes and the 

convex region 
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(b) The k-d tree buckets 

 
(c) The final clusters formed 

 
(d) The solution obtained after running the algorithm. 

Fig. 7: Result for uniformly distributed data of 1000 nodes, k = 16, 

threshold = 64 

 
(a) Input to the algorithm - the distribution of the sensor nodes and the 

convex region. 

 
(b) The k-d tree buckets 

 

 
(c) The final clusters formed. 

 
(d) The solution obtained after running the algorithm. 

Fig. 8: Result for non-uniformly distributed data of 79 nodes k = 3, 

threshold = 2. 

IV. CONCLUSION 

In this paper, we have introduced the base station problem. 

After that, we discussed an existing and efficient algorithm for 

solving the problem. Subsequently, we explored some the 

drawbacks and areas of improvement in that algorithm, along 

with some of the challenges that would be encountered in doing 

so. We then proposed our solution, and obtained fairly positive 

results with a relatively low computational overhead. 
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We experimented with different data sets to see how the 

algorithm’s behavior changes according to the input data. The 

algorithm was found to produce correct clusters for reasonable 

values of k. We also observed that the algorithm is sensitive to 

the threshold value of the buckets. An interesting observation 

was that for uniformly distributed data the algorithm works 

best when the threshold value is a power of 2. This is because 

the densities are scaled using a logarithmic function to the base 

of 2. 

The threshold value decides the shape of the buckets which 

in turn decides the shape of the final clusters. A possible 

improvement is to automate the value of k by running the 

algorithm for a range of values and checking the subsequent 

clustering with the help of an objective function.  
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