
 

 

 

Abstract—This paper presents a case where the equilibrium 

configurations of a compliant tensegrity mechanism are 

analyzed. The mechanism consists of four struts, four elastic 

ties, and eight non-elastic ties. The tensegrity is defined as 

being in a state of equilibrium when the following four 

conditions are met: the sum of the forces at each of the top 

four coordinate points of the tensegrity are zero, the forces in 

each member are equal in magnitude, opposite in sense, and 

collinear. The input values that are defined include the length 

of each strut, the length of each elastic tie, the bottom four 

coordinate points, and an initial guess of the top four 

coordinate points. Mathematical optimization via the interior 

point method is used to minimize a function that defines the 

orientation of the tensegrity closest to equilibrium. In the case 

that is presented all the spring constants associated with the 

elastic ties remain constant and the tensegrity configuration 

closest to equilibrium is found. A contribution of this paper is 

to show how certain design restrictions affect the equilibrium 

solution configuration. 
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I. INTRODUCTION 

HE term tensegrity is one that was created by Buckminster 

Fuller as a contraction of the words ‘tensional integrity’ 

(Fuller, 1975). Integrity as it relates to structures refers to the 

stability of a system. In the case of a tensegrity system, forces 

are allowed to be transferred from one part of the structure to 

another through compressive members and tension members 

(Pugh, 1976). These compressive members have internal 

forces that are in compression and are labeled as struts. The 

tension members have internal forces in tension and are 

labeled as ties. These components make up the tensegrity 

system which is a system that is in a stable self-equilibrated 

state comprised of a set of compressed components inside a 

continuum of tensioned components (Motro, 2003). This self-

equilibrated state is what makes the structure of a tensegrity 

unique. As a result of a tensegrity being in a state of stable 

equilibrium, the structure will return to the original given 

configuration after the application of small perturbations 

anywhere within the configuration (Skelton and de Oliveira, 

2009).  
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There have been several significant applications of tensegrity 

research spanning over many different fields. An American 

cell biologist named Donald Ingber worked with biologist 

Dimitrije Stamenovic to develop a mathematical model of 

tensegrity that predicts how cells from many different tissues 

behave mechanically (Stamenovic, 1996). More recently 

bioengineers Hod Lipson and Radhika Nagpal used 

tensegrities to construct macroscale robots that are able to 

move individually as well as self-assemble into larger 

collective mechanisms (Paul et al 2006).  

II.  PROBLEM STATEMENT 

The configuration of the tensegrity that is analyzed here is 

shown in Figure 1. The top and bottom of the tensegrity 

consists of a total of eight points. The bottom of the device is 

labeled as points O1, P1, Q1 and R1. The top of the device is 

labeled as points O2, P2, Q2 and R2. There are a total of 

twelve ties that include four elastic ties and eight non-elastic 

ties. The elastic ties fall along points P1O2, Q1P2, R1Q2, and 

O1R2. The other 8 ties are non-elastic and make up the bottom 

and top of the tensegrity. For this analysis it is assumed that 

the four base points, O1, P1, Q1, and R1 are fixed.  The 

problem at hand is to determine the equilibrium configuration 

of the mechanism when given the base point locations, the 

strut and tie lengths, and the spring constants and free lengths 

of the elastic ties.  

 
Fig. 1: 4-strut Tensegrity Mechanism 

 

Each of the eight points illustrated on the tensegrity in 

Figure 1 represents components with x, y, and z coordinates. 

Since only the top four points are allowed to vary, the 
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tensegrity configuration that is closest to equilibrium is defined 

by the twelve coordinates of these four points. A large scale 

iteration approach is undertaken in order to obtain the 

equilibrium configuration. To increase efficiency in solving 

this problem, the twelve output variables can be reduced to 

eight by representing each of the top four coordinate points by 

rotation angles, since the length of each strut is known. These 

rotation angles are defined in the following manner: each of 

the four struts are aligned along the x axis and then rotated 

about the z axis and the y axis respectively as the bottom four 

points remain constant. The rotation angle about the z axis is 

defined as alpha and the rotation about the modified y axis is 

defined as beta. Figure 2 illustrates how this rotation is done 

with strut O. The bottom point O1 remains fixed and the top 

point is allowed to move as the rotation angles vary.  

 
Fig. 2: Rotation angles shown on Tensegrity 

 

The transformation of any point in one coordinate system to 

a reference coordinate system can be found when the relative 

position and orientation of the pair of coordinate systems are 

known (Crane and Duffy, 1998). Compound transformations 

define instances where multiple translations and rotations can 

take place to define the initial and final coordinates of a given 

point. Equation 1 defines this transformation for the top four 

points as follows: 

 
        A

P1 = TTr*Tα*Tβ*
B
P1                              (1) 

 
 

AP1 and BP1 represent the end points of the strut members. 

BP1 is the variable that defines the top four points before the 

rotations and AP1 defines the top four points seen in Figure 1 

after the rotations. In Equation (1) TTr, Tα, Tβ are 4x4 

transformation matrices. TTr represents the translation that 

occurs to go from the origin to each of the bottom four points 

on the tensegrity. In Figure 1 the origin is defined as the point 

O1. This transformation matrix is defined as.  

 

                  TTr =                         (2) 

 

Here the variables Bx, By and Bz are the x, y and z 

coordinates of the bottom four points. Since the origin lies at 

O1 this matrix will be equal to the identity matrix for the first 

point. The second two matrices Tα and Tβ are defined as: 

 

                       Tα=                       (3) 

 

                  Tβ =                      (4)   

                                                           

Now given any two points along each end of the struts, the 

rotation angles about the y and z axis can be solved for.  

The configuration of the tensegrity that is the closest to 

equilibrium is solved for the following case: where the forces 

in the elastic ties are constants defined by constant ‘k’ values. 

The problem statement is presented as follows: 

 

Given:  

1. O1, P1, Q1 and R1 (bottom four coordinate points) 

2. L1, L2, L3 and L4 (length of the four strut members) 

3. k1, LO1 ( spring constant and free length for elastic tie 1) 

4. k2, LO2 ( spring constant and free length for elastic tie 2) 

5. k3, LO3 ( spring constant and free length for elastic tie 3) 

6. k4, LO4 ( spring constant and free length for elastic tie 4) 

7. O2, P2, Q2, and R2 (initial guess for the top four 

coordinate points) 

 

Find: The tensegrity configuration that is the closest to 

equilibrium. 

III. SOLUTION 

The solution for the stated problem was solved for using a 

combination of systems of equations involving the forces of 

the tensegrity members, the given point coordinates, the 

rotation angles, as well as mathematical optimization using the 

interior point algorithm. The members of the tensegrity that 

cannot change in length include the struts and the non-elastic 

ties. The lengths of the struts are defined by first stating the 

numerical coordinates of the bottom four points and the top 

four points. The bottom four points will remain constant 

throughout the problem as the top four points will be allowed 

to change as long as each of the strut lengths remain constant. 

The forces in the struts and non-elastic ties are labeled as 

constant variables and the numerical values for each of the 

forces in the elastic ties are entered using the following 

equation for force in a spring: 

 

                       Fspring = k*(L-LO)                              (5) 

   

Then the sum of forces at each of the top coordinate points 

of the tensegrity is taken. Figure 3 illustrates the sum of the 

Int'l Journal of Advances in Mechanical & Automobile Engg. (IJAMAE) Vol. 3, Issue 1(2016) ISSN 2349-1485 EISSN 2349-1493

http://dx.doi.org/10.15242/IJAMAE.U0616006 101



 

 

forces at the top point O2 of the tensegrity. The sum of forces 

at the other three top points are defined in the same manner. 

 

 
Fig. 3: Sum of Forces at Point O2 

 

The force in the top tie is in tension and therefore the 

force vectors are moving away from each other along the same 

axis the tie lies on. This satisfies the first two conditions for 

equilibrium which state that internal forces have to be opposite 

in sense and collinear (Seely and Ensign, 1921). The next 

property that needs to be satisfied for the mechanism to be in 

equilibrium is the forces in each of the members have to be 

equal in magnitude (Hibbler, 2013). The struts and elastic ties’ 

internal forces are defined as uniform and therefore satisfy this 

last condition of equilibrium. Therefore if the internal forces of 

the top ties are equal in magnitude this condition for 

equilibrium will be satisfied.  

To ensure the internal forces of the top ties are equal in 

magnitude a function was devised to minimize the difference 

between the internal forces in each of the top ties. This 

mathematical minimization problem was created in Matlab 

using the interior point method algorithm. First a function f(x) 

is created as a function of the vector ‘x’ and corresponding 

equality and inequality constraints are defined. The vector x in 

this problem is defined as a design vector for one case that will 

be solved for. This case will output a design vector that 

includes the eight rotation angles that describe the orientation 

of the tensegrity. The function defines the position of the 

tensegrity in terms of the sines and cosines of the rotation 

angles making it a nonlinear optimization problem. The 

interior point algorithm can used to minimize a non-linear 

function subject to equality and non-equality constraints 

(Bonnans et al, 2006). The Matlab optimization toolbox is 

used to carry out this minimization that will drive the 

difference between the internal forces in the top ties of the 

tensegrity to zero and therefore satisfying the third condition 

for equilibrium.    

The internal forces in the top ties are labeled as FtopO2P2a, 

FtopO2P2b, FtopR2O2a, FtopR2O2b, FtopP2Q2a, FtopP2Q2b, FtopQ2R2a, 

and FtopQ2R2b. The subscript notation denotes the two points at 

each end of the top tie. Figure 3 shows how the internal forces 

in the top tie between points O2 and P2 are oriented. The 

forces in the three remaining side elastic ties are defined in the 

same way and are labeled as: FsideQ1P2, FsideR1Q2 and FsideO1R2. 

The variables used to define each of those forces include the 

following: kQP = 2 lbf/in, LOQP = 1 in, kRQ = 1.8 lbf/in, LORQ = 

1 in, kOR = 1.3 lbf/in, LOOR = .5 in. The forces in each of the 

four struts are constants denoted using similar notation and are 

labeled as: FstrutO, FstrutP, FstrutQ and FstrutR.  

Now all the tensegrity’s forces and corresponding 

variables are defined and the summation of forces is used to 

define the forces in the struts and elastic ties in terms of the 

given point coordinates and the forces in the side elastic ties 

that have been defined as constants. By using the force 

components in the x, y and z coordinates there will be three 

equations and three unknowns at each of the top four points of 

the tensegrity. The three unknowns will include the two forces 

in the top ties and the force in the strut at each point. In the 

system of equations at point O2 the three unknowns are 

FtopO2P2a, FtopR2O2a and FstrutO. These three equations and three 

unknowns are then solved for using MATLAB and expressed 

in terms of the top coordinates of the tensegrity and the 

variable FsideP1O2 which has already been defined in terms of 

given numerical values. These steps are repeated for the 

system of equations associated with the remaining three top 

points P2, Q2 and R2. Now all of the forces in the struts and the 

top ties are expressed in terms of the top coordinates of the 

tensegrity and the forces in the side ties. Defining the forces in 

this way ensures that the summation at each of the top points 

of the tensegrity is zero and satisfies the fourth and last 

condition for equilibrium. 

To define an ideal starting position for the coordinates of 

the top points the motion analysis in the 3D CAD software 

SolidWorks is used. Figure 4 represents a tensegrity model in 

SolidWorks that is used in order to get the orientation of a four 

strut tensegrity in equilibrium. In this model the members are 

fixed to each of the eight points on the bottom and top of the 

tensegrity. Numerical values for the ‘k’ constants and free 

lengths are entered into the motion analysis toolbox. These 

values are defined as the following:  

 

          O1=  [0,0,0]  

          P1 = [6,0,0]  

          Q1 = [5,4,0]  

          R1 = [2,5,1]  
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The values for the lengths of the struts O, P, Q and R are 

8in, 7in, 10in and 7in respectively. The lengths of the top ties 

going from R2O2, O2P2, P2Q2 and Q2R2 are 5in, 7in, 8in and 6 

in respectively. 

 
Fig. 4: Rendered 4 Strut Tensegrity Solidworks Image 

 
 

After numerical values were entered in for the top four 

points, a damper was selected for each of the four elastic ties 

so ensure motion of the springs would eventually stop during 

the motion analysis. The motion study in Solidworks was then 

run and the values for the top four points of the tensegrity in 

equilibrium were as follows:  

 

   O2 = [6.635038, 0.175616, 4.466031]  

   P2 = [3.043715, 5.843685, 2.472191]  

   Q2 = [-2.995701, 1.546081, 5.481518]  

   R2 = [1.942664,-1.416448,3.797843]       

                          

Now that all variables associated with the tensegrity have been 

defined in terms of constants and the x, y and z coordinates of 

the top and bottom points, the coordinates are then written in 

terms of the rotation angles alpha and beta. The angles alpha1 

and beta1 correspond to point O2, alpha2 and beta2 correspond 

to point P2, alpha3 and beta3 correspond to point Q2 and alpha 

4 and beta4 correspond to point R2. For the purpose of the 

design vector in the Matlab function, α1, β1, α2, β2, α3, β3, 

α4, β4 correspond to x(1) through x(8) respectively.  

Through minimization the sum of two variables, named 

Totalsummation and Totaldifference are going to be driven to zero. 

 

       Fvalue = Totalsummation + Totaldifference                   (6) 

 

These variables represent the sum of the forces at each of 

the top four points and the difference between the internal 

forces in each of the top four ties respectively. The output will 

be the configuration with the function value closest to zero 

defined by eight rotation angles. The case presented will show 

the resulting configuration as the forces in the springs remain 

constant 

IV. RESULTS 

This case presents results for two sets of constraints. For 

the first set of constraints, the strut and top ties are restricted to 

the values of length already defined for them and the beta 

angles are restricted to the range of 0 to 180 degrees. Here the 

resulting function value analyzed is calculated from Equation 6 

and comes out to a value of 12.492 lbf. The individual values 

defined in the function value equation are: 

 

           Totalsummation = 1.8383e-07 lbf                   (7) 

           Totaldifference = 12.4920 lbf                             (8) 

 

Figure 5 below shows the resulting configuration of the 

tensegrity plotted in a three dimensional x, y and z plane in 

Matlab. The blue members represent the struts, the red 

members represent the elastic side ties, the yellow members 

represent the top ties, and the black members represent the 

bottom of the tensegrity fixed to points O1, P1, Q1 and R1. 

 
Fig. 5: Tensegrity with set 1 constraints 

 

This resulting configuration shows that one of the strut 

members is lying almost flat along the x-y plane. To prevent 

resulting cases like this the next set of constraints will address 

this design issue by altering the range of degrees for the beta 

angles. For the second set of constraints the beta angles are 

restricted to a smaller range of 35 to 180 degrees while the 

constraints of length used in the previous case remain the 

same. Here the resulting function value is 20.522 lbf. The 

individual values defined in the function value equation are: 

 

        Totalsummation = 6.7223 lbf                      (9) 

                   Totaldifference = 13.8003 lbf                         (10) 

 

Here we can see that running the optimization problem 
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with a stricter range for the beta angle values increases the 

overall function value by almost a factor of two. Figure 6 

shows the resulting configuration. 

 

 
Fig. 6: Tensegrity with set 2 constraints 

 

This figure shows that the design of the tensegrity is 

improved but at the cost of a much higher function value. 

 

V.  CONCLUSION  

This paper presented a case where the orientation of a 

tensegrity closest to equilibrium was defined and solved for 

subject to several design constraints. A tensegrity’s orientation 

was defined as being in a state of equilibrium when the sum of 

the forces at the top of the mechanism is zero as well as the 

internal forces in the tensegrity’s members were all collinear, 

opposite in sense and equal in magnitude. Running an 

optimization problem in which the difference between the 

internal forces in the members as well as the sum of the forces 

at each of the top points was minimized, the orientation closest 

to equilibrium was found. Design constraints including the 

length of the members and the range for the rotation angles 

were placed on the function being minimized. By analyzing the 

resulting configurations it was evident that the more design 

constraints placed on the problem, the farther away from 

equilibrium the tensegrity mechanism was. 
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