

Abstract—A skip list is a data structure that can be used as an

alternative to balanced trees. This data structure uses probabilistic

balancing rather than strictly enforcing balancing and causes

simplicity in the algorithms for insertion and deletion for a skip list.

This paper analyzes literature that compares the use of skip lists

with other data structures. This project focused not only on the

comparison of data structures, but the structure of skip list

algorithms and their performance against similar types used in

implementation by other data structures. The findings were that skip

lists are a much easier and efficient algorithm to implement

compared to self-adjusting tree and balanced search tree algorithms.

Keywords— Skip Lists, Randomized Algorithms, And Balanced

Search Trees.

I. INTRODUCTION

O what do we have as an alternative to balanced tree

algorithms? Skip lists. A data structure which is a

probabilistic alternative and is balanced by consulting a

random generator. Although skip lists have a bad worst-case

performance, no input sequence consistently produces the

worst-case performance, which is much like the quicksort

type of algorithm when the pivot element is chosen randomly.

Skip lists have balance properties similar to that of a search

tree built by random insertions, but doesn’t require random

insertions. A skip list is also very unlikely to be in a state of

unbalanced. For example, a dictionary can have more than

250 elements. The chance that a search done on this

dictionary will take more than three times the expected run

time is less than one in a million. So we have good stability

with a skip list balance given a solid number of elements.

Balancing a data structure probabilistically is easier than

doubtlessly maintaining the balance. Skip lists are more of a

representation than trees for many applications, which also

leads to simple algorithms. The simplicity of a skip list

algorithm is fantastic because it makes it easier for

implementation and provides significant constant factor speed

improvements over balanced tree and self-adjusting tree

algorithms. Skip lists are also very space efficient. They can

easily be configured to require an average of (4/3) pointers

per element and balance is not required to be stored with each

node.

1
Computer Science and Engineering, University of Connecticut

II. SKIP LISTS

A skip list S for an ordered dictionary D consists of a series

of sequences that we can note as {S0, S1,...,Sh}. Each

sequence Si stores a subset of the items of D sorted by a non-

decreasing key plus items with two special keys, denoted as

−∞ and +∞, where −∞ is smaller than every possible key that

can be inserted in D and +∞ is larger than every possible key

that can be inserted in D. Additionally, the sequences in S

satisfy the following conditions:

• Sequence S0 contains every item of dictionary D (plus

the special items with keys −∞ and +∞).

• For i = 1,..., h − 1, sequence Si contains (in addition to

−∞ and +∞) a randomly generated subset of the items in

sequence Si−1.

• Sequence Sh contains only −∞ and +∞.

 It is customary to visualize a skip list S with sequence S0

at the bottom and sequences S1,...,Sh−1 above it. Also, we

can refer to h as the height of skip list S. The sequences are

set up so that Si+1 contains more or less every other item in

Si. As can be seen later in the insertion method, the items in

Si+1 are chosen at random from the items in Si by picking

each item from Si to also be in Si+1 with probability of 1/2.

Essentially, we flip a coin for each item in Si and place that

item in Si+1 if the coin comes up as “heads.” Therefore, we

expect S1 to have about n/2 items, S2 to have about n/4 items,

and, in general, Si to have about (n/2) i items. In other words,

we expect the height h of S to be about log (n). We look at a

skip list as a two-dimensional collection of positions arranged

horizontally into levels and vertically into towers. Each level

corresponds to a sequence Si and each tower contains

positions storing the same item across consecutive sequences.

The positions in a skip list can be traversed using the

following operations:

• after (p): the position following p on the same level

• before (p): the position preceding p on the same level

• below(p): the position below p in the same tower

• above (p): the position above p in the same tower

III. ALGORITHM TECHNIQUES

This section gives algorithms to search for, insert and

delete elements in such collections as a dictionary or symbol

table. The search operation return contents of the value

associated with the success or failure of key being presented

or not presented. The insert operation associates a specified

key with a new value if not already presented, and the delete

Comparison of Skip List Algorithms to

Alternative Data Structures

David N. Etim
1

S

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 3, Issue 2 (2016) ISSN 2349-1469 EISSN 2349-1477

http://dx.doi.org/10.15242/IJCCIE.U0616013 280

operation removes the specified key. Each element is

represented by a node, the level of which is chosen randomly

when the node is inserted without regard for the number of

elements in the data structure. A level node i has I forward

pointers, pointing to a higher level, which index 1 through i.

We do not need to store the level of a node in the node. The

level of a list is the highest level currently in the list, or 1

given that the list is indeed empty.

3.1. Searching

A skip list structure allows for simple dictionary search

algorithms. We can take into account the SkipSearch

algorithm in Figure 1. This method takes a key k and finds

the item in a skip list S with the largest key that is less than

or equal to k [2]. The algorithm begins by setting a position

variable p to the top-most, left position in the skip list S. The

variable p is set to the position of the special item with −∞ in

Sh.

Algorithm SkipSearch (k):

Input: A search key k

Output: Position p in S0 such that the item at p has the

largest key less than or equal to k

Let p be the top-most-left position of S (which should have at

least 2 levels).

while below (p) 6= null do

p ← below (p) {drop down}

while key (after (p)) ≤ k do

Let p ← after (p) {scan forward}

 end while

end while

return p

Algorithm 1: A generic search in a skip list S

In the next skip list search algorithm, we search for an

element by traversing forward pointers that do not go past the

node with the element that’s being searched for. When no

more progress can be done at the current level, the forward

pointers and search continues to the next level down. When

no more progress can be made at the first level, the process

moves to the front of the node that contains the element being

searched for if it is inside the list.

Search (list, searchKey)

x := list→header

-- loop invariant: x→key < searchKey

for i := list→level downto 1 do

while x→forward[i]→key < searchKey do

x := x→forward[i]

-- x→key < searchKey ≤ x→forward[1]→key

x := x→forward[1]

if x→key = searchKey then return x→value

else return failure
Algorithm 2: Search algorithm for skip list

3.2. Insertion

The insertion algorithm uses randomization to decide how

many references to the new item (k, e) should be added to the

skip list. The insertion begins with a new item (k, e) into a

skip list by performing a search operation. This allows for

the position p of the bottom-level item with the largest key

less than or equal to k. (k, e) is then inserted in this bottom-

level list immediately after position p. When the item is

finished being inserted, the random() function is called which

returns a number between 0 and 1. This is where we are

hypothetically flipping a coin. If the number is less than ½,

the flip is considered as “heads”, otherwise it is considered as

“tails”. If the flip is tails, the algorithm stops. If heads, then

the algorithm goes back to the next higher level and inserts

the new item in this level at its correct position. We repeat the

flipping process again and move higher if heads. The

insertion continues until we get to a flip that is considered

“tails”.

Algorithm SkipInsert (k, e):

p ← SkipSearch (k)

q ← insertAfterAbove (p, null, (k, e))

while random () < 1/2 do

 while above (p) = null do

p ← before (p) {scan backward}

 end while

 p ← above (p) {jump up to higher level}

 q ← insertAfterAbove (p, q, (k, e)) end while

Algorithm 3: Insertion, assuming random () returns a value

between 0 and 1, insertion never happens after top level

3.3. Deletion

 If an insertion generates a node with a level greater than

the previous maximum level of the list, we update the

maximum level of the list and initialize the appropriate

portions of the update vector. After every deletion made, the

maximum level of the list is decreased and the maximum

element is checked for whether the deletion is confirmed.

Delete(list, searchKey)

local update[1..MaxLevel]

x := list→header

for i := list→level downto 1 do

while x→forward[i]→key < searchKey do

 x := x→forward[i]

update[i] := x

x := x→forward[1]

if x→key = searchKey then

 for i := 1 to list→level do

 if update[i]→forward[i] ≠ x then

break

 update[i]→forward[i] := x→forward[i]

 free(x)

 while list→level > 1 and

list→header→forward[list→level] =

NIL do

list→level := list→level – 1

Algorithm 4: Skip list deletion

The time required to execute these operations is dominated

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 3, Issue 2 (2016) ISSN 2349-1469 EISSN 2349-1477

http://dx.doi.org/10.15242/IJCCIE.U0616013 281

by how much time it takes to search for the correct element.

For insertion and deletion, there is an additional cost

proportional to the level of the node being inserted or deleted.

The required time for finding an element is proportional to

the length of the search path, which is determined by the

pattern in which elements with various levels show up during

the list traversal.

IV. ALTERNATIVE DATA STRUCTURES

Balanced trees and self-adjusting trees are alternatives to

skip lists and can be used for the same type of problems. Both

types of trees have performance bounds of the same order.

The comparison and contrast between these structures and

skip lists are factors such as: difficulty of implementing the

proposed algorithms, constant factors such as speed, space,

and search cost, types of performance bounds, and

performance on a non-uniform distribution of queries.

4.1. Difficult Implementation

For a majority of applications, those who implement skip

lists agree that the implementation of skip lists is much easier

to do compared to balanced tree algorithms or self-adjusting

tree algorithms. The primary reason for more difficulty in

implementing balanced tree algorithms is the high demand of

keeping balance. Keeping a tree balanced is a slow operation

that consumes plenty resources and must be done carefully.

4.2. Constant Factors

Constant factors can make a big difference in the

application of an algorithm. This is especially true for sub-

linear algorithms. For example, assume that we have

algorithms A and B that both require O (log n) time to

process a query, but that B is twice as fast as A. In the time it

takes algorithm A to process a query on a data set of size n,

algorithm B can process a query on a data set of size n2.

There are two important but qualitatively different

contributions to the constant factors of an algorithm. First,

the inherent complexity of the algorithm places a lower bound

on any implementation. Self-adjusting trees are continuously

rearranged as searches are performed, which imposes a

significant overhead on any implementation of self-adjusting

trees. Skip list algorithms seem to have very low inherent

constant-factor overheads, the inner loop of the deletion

algorithm for skip lists compiles to just six instructions.

TABLE I: RELATIVE SEARCH SPEED AND SPACE REQUIREMENTS, DEPENDING

ON THE VALUE OF P

p Normalized search times
(normalized L(n)/p)

Average # of
pointers per node
(1/(1-p))

½ 1 2

1/e 0.94… 1.58…

1/4 1 1.33

1/8 1.33… 1.14…

1/16 2 1.07…

Second, if the algorithm is complex, users are deterred

from recreating optimizations. For example, balanced tree

algorithms are normally described using recursive insert and

delete procedures, since that is the most simple and

perceptive method of describing the algorithms. A recursive

insert or delete procedure incurs a procedure call overhead.

By using non-recursive insert and delete procedures, some of

this overhead can be eliminated. However, the complexity of

non-recursive algorithms for insertion and deletion in a

balanced tree is intimidating and this complexity deters most

people from eliminating recursion in these routines. Skip list

algorithms are already non-recursive and they are easy

enough that those programming are not disappointed from

performing optimizations.

Table 2 below compares the performance of

implementations of skip lists and four other techniques. All

implementations were optimized for efficiency. The AVL tree

algorithms were written by James Macropol of Contel and the

2–3 tree algorithms are based on those also presented in [11].

Several other existing balanced tree packages were timed and

found to be a lot slower than the results presented below. The

self-adjusting tree algorithms are based on those presented in

[10]. The times in this table reflect the CPU time performing

an operation in a data structure containing 216 elements with

integer keys. The values in parentheses show the results

relative to the skip list time. The times for insertion and

deletion do not include the time for memory management.

TABLE II

TIMINGS OF IMPLEMENTATION OF COMPARED ALGORITHMS

Skip lists perform more comparisons than other methods.

The skip list algorithms presented here require an average of

L (n)/p + 1/ (1–p) + 1 comparisons. For tests using real

numbers as keys, skip lists were slightly slower than the non-

recursive AVL tree algorithms and search in a skip list was

slower than search in a 2–3 tree. Insertion and deletion for

skip list algorithms was still quicker than using the recursive

2–3 tree algorithms. If comparisons are costly, it is possible to

change the algorithms so that we never compare the search

key against the key of a node more than once during a search.

For p = 1/2, this produces an upper bound on the expected

number of comparisons of 7/2 + 3/2 log2n.

4.3. Performance Bounds

Balanced trees have worst-case time bounds, self-adjusting

trees have amortized time bounds, and skip lists have

probabilistic time bounds. An individual operation for a self-

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 3, Issue 2 (2016) ISSN 2349-1469 EISSN 2349-1477

http://dx.doi.org/10.15242/IJCCIE.U0616013 282

adjusting tree will take O (n) time, but the time bound always

holds over a long sequence of operations. For skip lists, any

operation or sequence of operations can take longer than

expected, although the probability of operations taking much

longer than expected is inconsequential. For some real-time

productions, it’s assured that an operation will complete

within a certain time bound. For such applications, self-

adjusting trees may be undesirable, since they run longer than

expected. For example, an individual search can take O (n)

time instead of O (log n) time.

4.4. Non-uniform Query Distribution

Self-adjusting trees have the property that they adjust to

non-uniform query distributions [3]. Since skip lists are faster

than self-adjusting trees by a significant amount when a

uniform query distribution is encountered, self-adjusting trees

are faster than skip lists only for highly skewed distributions.

It’s possible to create self-adjusting skip lists, but the

tampering of simplicity has not been a desire. In an

application where highly skewed distributions are expected,

either self-adjusting trees or an augmented skip list may be

preferred.

V. CONCLUSION

In theory, it can be said that there is no need for skip lists.

Balanced trees can do everything that skip lists have the

ability to do and have good worst-case time bounds unlike

skip lists. However, implementing balanced tree algorithms

is a demanding task and as a result balanced tree algorithms

are hardly implemented by those working on real world

applications and systems. Skip lists are a simple data

structure that is seen as a better alternative to balanced trees

for most applications. There is decent simplicity in using

skip list algorithms to implement and modify for various

purposes. Skip lists are about as fast as highly optimized

balanced tree algorithms and are considerably faster than

casually implemented balanced tree algorithms.

VI. RELATED WORK

Many papers have been written on implementing

concurrent search structures using search trees, both balanced

and unbalanced. Those for balanced trees [4, 5] tend to be

very complicated, requiring exclusive locks and read locks,

and allowing at most O (log n) busy writers. Some of the

concurrency schemes for unbalanced trees [6, 7, and 8] allow

O (n) busy writers and are easier than concurrent balanced

tree schemes. However, certain input patterns can easily cause

bad performance and the concurrency algorithms presented

for skip lists appear simpler and allow as much or more

concurrency. It does not seem that skip lists are particularly

well suited for disk-based data structures, so this work does

not provide any direct competition for concurrent B-trees.

ACKNOWLEDGMENT

I would like to say thank you to Professor Sanguthevar

Rajasekaran for his instruction during the spring 2016

semester as well as introducing the topics during the

Randomization in Computing course.

REFERENCES

[1] Pugh, W. Skip Lists: A Probabilistic Alternative to Balanced Trees.

Algorithms and Data Structures: Workshop WADS ’89, Ottawa, Canada,

August 1989, Springer-Verlag Lecture Notes in Computer Science 382,

437-449. (Revised version to appear in Comm. ACM).

[2] Goodrich, M. and Tamassia, R., Simplified Analyses of Randomized

Algorithms for Searching, Sorting, and Selection.

[3] Aragon, Cecilia and Raimund Seidel, Randomized Search Trees,

Proceedings of the 30th Ann. IEEE Symp on Foundations of Computer

Science, pp 540–545, October 1989.

[4] Ellis, C. Concurrent search and insertion in AVL trees, IEEE Trans. on

Comput. C-29 (Sept. 1980) 811-817.

[5] Ellis, C. Concurrent search and insertion in 2-3 trees. Acta Inf. 14 (1980)

63-86.

[6] Kung, H.T. and Lehman, Q. Concurrent Manipulation of Binary Search

Trees, ACM Trans. on Database Systems, Vol. 5, No. 3 (Sept. 1980), 354-

382.

[7] Manber, U. Concurrent Maintenance of Binary Search Trees, IEEE

Transactions on Software Engineering, Vol. SE-10, No. 6 (November

1984), 777-784.

[8] Manber, U. and Ladner, P. Concurrent Control in a Dynamic Search

Structure, ACM Trans. on Database Systems, Vol. 9, No. 3 (Sept 1984),

439-455.

[9] Pugh, W., Concurrent Maintenance of Skip Lists, Tech Report TR-CS-

2222, Dept. of Computer Science, University of Maryland, College Park,

1989.

[10] Sleator, D. and R. Tarjan “Self-Adjusting Binary Search Trees,” Journal of

the ACM, Vol 32, No. 3, July 1985, pp. 652-666.

[11] Wirth, N. Algorithms + Data Structures = Programs, Prentice-Hall, 1976.

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 3, Issue 2 (2016) ISSN 2349-1469 EISSN 2349-1477

http://dx.doi.org/10.15242/IJCCIE.U0616013 283

