
 

 

 

Abstract—A skip list is a data structure that can be used as an 

alternative to balanced trees. This data structure uses probabilistic 

balancing rather than strictly enforcing balancing and causes 

simplicity in the algorithms for insertion and deletion for a skip list. 

This paper analyzes literature that compares the use of skip lists 

with other data structures. This project focused not only on the 

comparison of data structures, but the structure of skip list 

algorithms and their performance against similar types used in 

implementation by other data structures. The findings were that skip 

lists are a much easier and efficient algorithm to implement 

compared to self-adjusting tree and balanced search tree algorithms. 

 

Keywords— Skip Lists, Randomized Algorithms, And Balanced 

Search Trees.  

I. INTRODUCTION 

O what do we have as an alternative to balanced tree 

algorithms? Skip lists. A data structure which is a 

probabilistic alternative and is balanced by consulting a 

random generator. Although skip lists have a bad worst-case 

performance, no input sequence consistently produces the 

worst-case performance, which is much like the quicksort 

type of algorithm when the pivot element is chosen randomly.  

Skip lists have balance properties similar to that of a search 

tree built by random insertions, but doesn’t require random 

insertions. A skip list is also very unlikely to be in a state of 

unbalanced. For example, a dictionary can have more than 

250 elements. The chance that a search done on this 

dictionary will take more than three times the expected run 

time is less than one in a million. So we have good stability 

with a skip list balance given a solid number of elements. 

Balancing a data structure probabilistically is easier than 

doubtlessly maintaining the balance.  Skip lists are more of a 

representation than trees for many applications, which also 

leads to simple algorithms.  The simplicity of a skip list 

algorithm is fantastic because it makes it easier for 

implementation and provides significant constant factor speed 

improvements over balanced tree and self-adjusting tree 

algorithms.  Skip lists are also very space efficient.  They can 

easily be configured to require an average of (4/3) pointers 

per element and balance is not required to be stored with each 

node.  
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II.  SKIP LISTS 

A skip list S for an ordered dictionary D consists of a series 

of sequences that we can note as {S0, S1,...,Sh}. Each 

sequence Si stores a subset of the items of D sorted by a non-

decreasing key plus items with two special keys, denoted as 

−∞ and +∞, where −∞ is smaller than every possible key that 

can be inserted in D and +∞ is larger than every possible key 

that can be inserted in D. Additionally, the sequences in S 

satisfy the following conditions:  

• Sequence S0 contains every item of dictionary D (plus 

the special items with keys −∞ and +∞).  

• For i = 1,..., h − 1, sequence Si contains (in addition to 

−∞ and +∞) a randomly generated subset of the items in 

sequence Si−1.  

• Sequence Sh contains only −∞ and +∞.  

 It is customary to visualize a skip list S with sequence S0 

at the bottom and sequences S1,...,Sh−1 above it. Also, we 

can refer to h as the height of skip list S. The sequences are 

set up so that Si+1 contains more or less every other item in 

Si. As can be seen later in the insertion method, the items in 

Si+1 are chosen at random from the items in Si by picking 

each item from Si to also be in Si+1 with probability of 1/2. 

Essentially, we flip a coin for each item in Si and place that 

item in Si+1 if the coin comes up as “heads.” Therefore, we 

expect S1 to have about n/2 items, S2 to have about n/4 items, 

and, in general, Si to have about (n/2) i items. In other words, 

we expect the height h of S to be about log (n). We look at a 

skip list as a two-dimensional collection of positions arranged 

horizontally into levels and vertically into towers. Each level 

corresponds to a sequence Si and each tower contains 

positions storing the same item across consecutive sequences. 

The positions in a skip list can be traversed using the 

following operations: 

• after (p): the position following p on the same level 

• before (p): the position preceding p on the same level 

• below(p): the position below p in the same tower 

• above (p): the position above p in the same tower 

III. ALGORITHM TECHNIQUES  

This section gives algorithms to search for, insert and 

delete elements in such collections as a dictionary or symbol 

table. The search operation return contents of the value 

associated with the success or failure of key being presented 

or not presented.  The insert operation associates a specified 

key with a new value if not already presented, and the delete 

Comparison of Skip List Algorithms to 

Alternative Data Structures 

David N. Etim
1
 

S 

Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 3, Issue 2 (2016) ISSN 2349-1469 EISSN 2349-1477

http://dx.doi.org/10.15242/IJCCIE.U0616013 280



 

 

operation removes the specified key.  Each element is 

represented by a node, the level of which is chosen randomly 

when the node is inserted without regard for the number of 

elements in the data structure. A level node i has I forward 

pointers, pointing to a higher level, which index 1 through i.  

We do not need to store the level of a node in the node.  The 

level of a list is the highest level currently in the list, or 1 

given that the list is indeed empty.  

3.1. Searching 

A skip list structure allows for simple dictionary search 

algorithms. We can take into account the SkipSearch 

algorithm in Figure 1. This method takes a key k and finds 

the item in a skip list S with the largest key that is less than 

or equal to k [2].  The algorithm begins by setting a position 

variable p to the top-most, left position in the skip list S.  The 

variable p is set to the position of the special item with −∞ in 

Sh. 

Algorithm SkipSearch (k): 

Input: A search key k 

Output: Position p in S0 such that the item at p has the 

largest key less than or equal to k 

Let p be the top-most-left position of S (which should have at 

least 2 levels). 

while below (p) 6= null do 

p ← below (p) {drop down} 

while key (after (p)) ≤ k do 

Let p ← after (p) {scan forward}  

                 end while 

end while 

return p 

Algorithm 1: A generic search in a skip list S 

In the next skip list search algorithm, we search for an 

element by traversing forward pointers that do not go past the 

node with the element that’s being searched for. When no 

more progress can be done at the current level, the forward 

pointers and search continues to the next level down. When 

no more progress can be made at the first level, the process 

moves to the front of the node that contains the element being 

searched for if it is inside the list. 

Search (list, searchKey) 

x := list→header 

-- loop invariant: x→key < searchKey 

for i := list→level downto 1 do 

while x→forward[i]→key < searchKey do 

x := x→forward[i] 

-- x→key < searchKey ≤ x→forward[1]→key 

x := x→forward[1] 

if x→key = searchKey then return x→value 

else return failure 
Algorithm 2: Search algorithm for skip list 

3.2. Insertion 

The insertion algorithm uses randomization to decide how 

many references to the new item (k, e) should be added to the 

skip list. The insertion begins with a new item (k, e) into a 

skip list by performing a search operation.  This allows for 

the position p of the bottom-level item with the largest key 

less than or equal to k.  (k, e) is then inserted in this bottom-

level list immediately after position p. When the item is 

finished being inserted, the random() function is called which 

returns a number between 0 and 1. This is where we are 

hypothetically flipping a coin. If the number is less than ½, 

the flip is considered as “heads”, otherwise it is considered as 

“tails”. If the flip is tails, the algorithm stops. If heads, then 

the algorithm goes back to the next higher level and inserts 

the new item in this level at its correct position. We repeat the 

flipping process again and move higher if heads. The 

insertion continues until we get to a flip that is considered 

“tails”.  

Algorithm SkipInsert (k, e):  

p ← SkipSearch (k)  

q ← insertAfterAbove (p, null, (k, e))  

while random () < 1/2 do  

   while above (p) = null do  

p ← before (p) {scan backward}  

   end while  

   p ← above (p) {jump up to higher level}  

   q ← insertAfterAbove (p, q, (k, e)) end while 

Algorithm 3: Insertion, assuming random () returns a value 

between 0 and 1, insertion never happens after top level 

3.3. Deletion  

    If an insertion generates a node with a level greater than 

the previous maximum level of the list, we update the 

maximum level of the list and initialize the appropriate 

portions of the update vector. After every deletion made, the 

maximum level of the list is decreased and the maximum 

element is checked for whether the deletion is confirmed. 

Delete(list, searchKey)  

local update[1..MaxLevel]  

x := list→header  

for i := list→level downto 1 do  

while x→forward[i]→key < searchKey do  

   x := x→forward[i]  

update[i] := x  

x := x→forward[1]  

if x→key = searchKey then  

   for i := 1 to list→level do  

      if update[i]→forward[i] ≠ x then 

break  

    update[i]→forward[i] := x→forward[i]  

   free(x)  

   while list→level > 1 and  

list→header→forward[list→level] = 

NIL do  

list→level := list→level – 1 

Algorithm 4: Skip list deletion 

The time required to execute these operations is dominated 
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by how much time it takes to search for the correct element.  

For insertion and deletion, there is an additional cost 

proportional to the level of the node being inserted or deleted.  

The required time for finding an element is proportional to 

the length of the search path, which is determined by the 

pattern in which elements with various levels show up during 

the list traversal. 

IV. ALTERNATIVE DATA STRUCTURES 

Balanced trees and self-adjusting trees are alternatives to 

skip lists and can be used for the same type of problems. Both 

types of trees have performance bounds of the same order. 

The comparison and contrast between these structures and 

skip lists are factors such as: difficulty of implementing the 

proposed algorithms, constant factors such as speed, space, 

and search cost, types of performance bounds, and 

performance on a non-uniform distribution of queries. 

4.1. Difficult Implementation  

For a majority of applications, those who implement skip 

lists agree that the implementation of skip lists is much easier 

to do compared to balanced tree algorithms or self-adjusting 

tree algorithms. The primary reason for more difficulty in 

implementing balanced tree algorithms is the high demand of 

keeping balance. Keeping a tree balanced is a slow operation 

that consumes plenty resources and must be done carefully. 

4.2. Constant Factors 

Constant factors can make a big difference in the 

application of an algorithm. This is especially true for sub-

linear algorithms. For example, assume that we have 

algorithms A and B that both require O (log n) time to 

process a query, but that B is twice as fast as A.  In the time it 

takes algorithm A to process a query on a data set of size n, 

algorithm B can process a query on a data set of size n2. 

There are two important but qualitatively different 

contributions to the constant factors of an algorithm. First, 

the inherent complexity of the algorithm places a lower bound 

on any implementation. Self-adjusting trees are continuously 

rearranged as searches are performed, which imposes a 

significant overhead on any implementation of self-adjusting 

trees. Skip list algorithms seem to have very low inherent 

constant-factor overheads, the inner loop of the deletion 

algorithm for skip lists compiles to just six instructions. 

 

 
TABLE I: RELATIVE SEARCH SPEED AND SPACE REQUIREMENTS, DEPENDING 

ON THE VALUE OF P 

p Normalized search times 
(normalized L(n)/p) 

Average # of 
pointers per node 
(1/(1-p))  

½ 1 2 

1/e 0.94… 1.58… 

1/4 1 1.33 

1/8 1.33… 1.14… 

1/16 2 1.07… 

 

Second, if the algorithm is complex, users are deterred 

from recreating optimizations. For example, balanced tree 

algorithms are normally described using recursive insert and 

delete procedures, since that is the most simple and 

perceptive method of describing the algorithms. A recursive 

insert or delete procedure incurs a procedure call overhead. 

By using non-recursive insert and delete procedures, some of 

this overhead can be eliminated. However, the complexity of 

non-recursive algorithms for insertion and deletion in a 

balanced tree is intimidating and this complexity deters most 

people from eliminating recursion in these routines.  Skip list 

algorithms are already non-recursive and they are easy 

enough that those programming are not disappointed from 

performing optimizations.  

Table 2 below compares the performance of 

implementations of skip lists and four other techniques. All 

implementations were optimized for efficiency. The AVL tree 

algorithms were written by James Macropol of Contel and the 

2–3 tree algorithms are based on those also presented in [11]. 

Several other existing balanced tree packages were timed and 

found to be a lot slower than the results presented below. The 

self-adjusting tree algorithms are based on those presented in 

[10]. The times in this table reflect the CPU time performing 

an operation in a data structure containing 216 elements with 

integer keys. The values in parentheses show the results 

relative to the skip list time.  The times for insertion and 

deletion do not include the time for memory management. 
 

TABLE II 

TIMINGS OF IMPLEMENTATION OF COMPARED ALGORITHMS 

 
Skip lists perform more comparisons than other methods.  

The skip list algorithms presented here require an average of 

L (n)/p + 1/ (1–p) + 1 comparisons. For tests using real 

numbers as keys, skip lists were slightly slower than the non-

recursive AVL tree algorithms and search in a skip list was 

slower than search in a 2–3 tree.  Insertion and deletion for 

skip list algorithms was still quicker than using the recursive 

2–3 tree algorithms. If comparisons are costly, it is possible to 

change the algorithms so that we never compare the search 

key against the key of a node more than once during a search. 

For p = 1/2, this produces an upper bound on the expected 

number of comparisons of 7/2 + 3/2 log2n. 

4.3. Performance Bounds 

Balanced trees have worst-case time bounds, self-adjusting 

trees have amortized time bounds, and skip lists have 

probabilistic time bounds.  An individual operation for a self-
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adjusting tree will take O (n) time, but the time bound always 

holds over a long sequence of operations.  For skip lists, any 

operation or sequence of operations can take longer than 

expected, although the probability of operations taking much 

longer than expected is inconsequential.  For some real-time 

productions, it’s assured that an operation will complete 

within a certain time bound.  For such applications, self-

adjusting trees may be undesirable, since they run longer than 

expected.  For example, an individual search can take O (n) 

time instead of O (log n) time. 

4.4. Non-uniform Query Distribution 

Self-adjusting trees have the property that they adjust to 

non-uniform query distributions [3]. Since skip lists are faster 

than self-adjusting trees by a significant amount when a 

uniform query distribution is encountered, self-adjusting trees 

are faster than skip lists only for highly skewed distributions. 

It’s possible to create self-adjusting skip lists, but the 

tampering of simplicity has not been a desire.  In an 

application where highly skewed distributions are expected, 

either self-adjusting trees or an augmented skip list may be 

preferred. 

V. CONCLUSION 

In theory, it can be said that there is no need for skip lists.  

Balanced trees can do everything that skip lists have the 

ability to do and have good worst-case time bounds unlike 

skip lists.  However, implementing balanced tree algorithms 

is a demanding task and as a result balanced tree algorithms 

are hardly implemented by those working on real world 

applications and systems.  Skip lists are a simple data 

structure that is seen as a better alternative to balanced trees 

for most applications.  There is decent simplicity in using 

skip list algorithms to implement and modify for various 

purposes.  Skip lists are about as fast as highly optimized 

balanced tree algorithms and are considerably faster than 

casually implemented balanced tree algorithms.  

VI. RELATED WORK 

Many papers have been written on implementing 

concurrent search structures using search trees, both balanced 

and unbalanced.  Those for balanced trees [4, 5] tend to be 

very complicated, requiring exclusive locks and read locks, 

and allowing at most O (log n) busy writers. Some of the 

concurrency schemes for unbalanced trees [6, 7, and 8] allow 

O (n) busy writers and are easier than concurrent balanced 

tree schemes. However, certain input patterns can easily cause 

bad performance and the concurrency algorithms presented 

for skip lists appear simpler and allow as much or more 

concurrency. It does not seem that skip lists are particularly 

well suited for disk-based data structures, so this work does 

not provide any direct competition for concurrent B-trees. 
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