
 

 

 

Abstract—Generalized form-finding procedure for a truncated 

polyhedral tensegrity is presented by using force density method 

combined with a genetic algorithm. A constrained minimization 

problem consisting of eigenvalues of the force density matrix and 

the standard deviation of the force densities of the cables is 

performed. Multiple force density curves are obtained and compared 

with those of previous investigations for a truncated icosahedral 

tensegrity in terms geometry, energy and total length ratio of cable-

to-strut. Various new shapes of tensegrity are obtained from present 

analysis by searching feasible self-equilibrium stable configuration 

of the structure. 
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I. INTRODUCTION 

tensegrity structure consists of a set of discontinuous 

compression components inside continuous tensile 

components [1]. Self-equilibrium analysis and stability 

properties are the fundamental problem in designing a 

tensegrity structure [2]. The design of tensegrity structures is 

divided into three steps: form-finding, structural stability and 

load analysis [3]. A key step in the design of tensegrity 

structures is a form-finding [4]. The form-finding method of 

tensegrity systems is a process of finding an equilibrium 

configuration. Over the past few years, several studies have 

been made on form-finding methods of the tensegrity systems. 

Most of the literature reports how form-finding is 

influenced by initial topology (node connectivity) and initial 

force densities. These initial values tend to dominate final 

stability properties. Therefore, the present study is inspired by 

this fact: a genetic algorithm is applied to the process of 

obtaining initial force densities. Using direct encoding to 

obtain the initial force density values, it has been shown that 

this new algorithm could successfully demonstrate the form-

finding process of any tensegrity structure. While performing 

a numerical example, this study found that the truncated 

regular tensegrity example give rise to new unknown 

configurations.  

The present study explores most generalized form-finding 

results of a truncated polyhedral tensegrity using force density 

method combined with a genetic algorithm. The various 

families of the truncated polyhedral tensegrity including Z-

based pattern as most investigators suggested, are obtained. 
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Numerical result is presented for a truncated icosahedral 

tensegrity addressing the accuracy and robustness of the 

proposed method. 

II. EQUILIBRIUM AND STABILITY 

The force density method uses a linear equation in the 

nodal coordinates; this equation can be linearized using Eq. 

(1), known as force density. 
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where any member k has a member force fk and a length of 

element lk (k = 1, 2, 3,…, b). For a d-dimensional (d = 2 or 3) 

tensegrity structure with b members and n free nodes can be 

expressed by a connectivity matrix C as discussed in [5]. 

Let x, y, z denote the nodal coordinate vectors of the free 

node, in x, y and z directions. In a state of self-stress, external 

forces are considered to be zero and self-weights are ignored. 

As a result, the equilibrium equations can be written as 

follows: 

[ ] ( ) [ ] [ ]T diag D xy z C q C xy z 000                 (2) 

where D is the force density matrix [6]. The force density 

matrix D is always square and symmetric [7] and semi-

definite due to the existence of compression members (struts), 

with qk < 0. Using a second term of Eq. (2), the equilibrium 

equation can be expressed as. 

( ) [ ]

( ) [ ]

( ) [ ]

T

T

T

diag

diag

diag







C q Cx 000

C q Cy 000

C q Cz 000

                                        (3) 

Eq. (3) can be reorganized as 

0Aq                                                                (4) 

where A is known as the equilibrium matrix, defined by 
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Eq. (2) shows the relationship between force density matrix 

D and nodal coordinates, and Eq. (4) illustrates the 

relationship between the equilibrium matrix A and force 

densities.  
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The form-finding procedure for tensegrity structures 

requires rank deficiency conditions of force density and 

equilibrium matrices. The rank deficiency of D (nD) has at 

least one state of self-stress, since the sum of the elements of 

the row or column of force density matrix D always equals 

zero. In a d-dimensional tensegrity structure, the rank 

deficiency of D has at least d useful particular solutions. 

Therefore, the rank deficiency condition is defined as 

1n n r d   
D D

                                                (6) 

where rD=rank(D).  
The second rank deficiency condition is related to a 

dimension of null space of the equilibrium matrix A. The 

dimension of null space of the equilibrium matrix A is 

identical to "s", known as the number of independent states of 

self-stress. A tensegrity structure ensures the existence of at 

least one state of self-stress and can be stated as 

1s n b r   
A A

                                              (7) 

where rA=rank(A). 

III. FORM-FINDING PROCESS 

In the proposed method, the dimensions of the structure, 

the nodal connectivity and the type of each member are only 

required for a form-finding procedure. Firstly, the force 

density matrix is calculated from the initial force density 

vector. A genetic algorithm is then used to obtain the initial 

force density values that leads to the force density matrix to 

satisfy Eq. (2). The fitness function consists of two variable, α 

and β.  

Minimize :                                                         (8) 
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and Γ denotes the total set of the force density; Γc is the set of 

the force density for cable members and Γs is the set of the 

force density for strut members. Subscript (i and j) and 

superscript (k) denote element numbers and group numbers, 

respectively. Eq. (9) indicates unilateral conditions for 

tensegrity grid structures, which is necessary to have a unique 

value of initial self-stress forces. In Eq. (8), α is the sum of 

the first d+1 smallest eigenvalues of the force density matrix 

as suggested by Koohestani [8]. The square force density 

matrix D can be factorized as follows by using the eigenvalue 

decomposition [9]. 

TD ΦΛΦ                                                              (12) 

where Φ is the orthogonal matrix whose ith column is the 

eigenvector basis of D. λ is the diagonal matrix whose 

diagonal elements are the corresponding eigenvalues, i.e., 

Λii= λi. The eigenvector of Φ corresponds to eigenvalue λi of 

Λ. The eigenvalues are in increasing order as 

1 2 n                                                     (13) 

In Eq. (8), β is the standard deviation of the force density in 

the cables. The role of β is to make uniform the force density 

values so that the value of the fitness function can be 

minimized. The notation m is the number of cables. 

Koohestani [8] also presented a variable that significantly 

improves the behavior of fitness function. However, in this 

paper, the more effective variable is used to not only 

significantly improve the behavior of the fitness function but 

also provide uniformity to the force density values.  

It is clear that the number of zero eigenvalues of D is equal 

to the dimension of its null space. The first d+1 eigenvectors 

of Φ, corresponding to the first d+1 smallest eigenvalues, 

respectively, are chosen as nodal coordinates [x, y, z] for a d-

dimensional tensegrity structure. 

IV. TRUNCATED POLYHEDRAL TENSEGRITY 

The Overall, there are five convex regular polyhedra, 

including tetrahedron, cube, octahedron, dodecahedron and 

icosahedron. By truncating uniformly each vertex of these 

regular polyhedra, the truncated regular polyhedra can be 

obtained [10]. Truncated forms of tetrahedron, dodecahedron 

and icosahedron are illustrated in Fig. 1. The tensegrity can 

be defined as two major classes, called Z-based structures and 

rhombic structures, respectively [1]. The Z-based tensegrity 

structure conforms to a rule of the Z-shape. In a Z-based 

truncated regular polyhedral tensegrity, some cables coincide 

with a cutting edge of the truncated polyhedron and the struts 

connect the vertexes by the rule of the Z-shape [11]. The 

rhombic tensegrity structure is composed of cells that consist 

of four cables around one strut, and the configuration in 

tensegrity structures of a Z-based cell and a rhombic cell are 

illustrated in Fig. 2 [12].   

The truncated tetrahedral tensegrity is the simplest type of 

the truncated polyhedral tensegrities. An analytical solution 

for regular (Z-based) truncated tetrahedral tensegrity was 

proposed by several authors [4, 13]. Also, the initial shapes 

and pre-stress modes for regular icosahedral and 

dodecahedral tensegrity modules were found analytically by 

[14]. Many researchers have presented form-finding results 

for the force density of the tensegrities as compared with the 

corresponding analytical solutions. In this study, new form-

finding results are presented targeting these three truncated 

polyhedral tensegrities. 

 
Fig. 1: Truncated regular polyhedral; (a) Truncated tetrahedron (b) 

Truncated dodecahedron, (c) Truncated icosahedron 
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Fig. 2: Configuration in tensegrity structures of (a) a Z-based cell (b) 

a rhombic cell 

V. NUMERICAL EXAMPLES 

In this section, a numerical example of truncated 

icosahedral tensegrity is presented to demonstrate newly 

developed multiple equilibrium paths for force densities of the 

structure. Based on the algorithm developed, both the nodal 

coordinates and the single integral feasible force density 

vector are simultaneously defined with limited information of 

the nodal connectivity and the type of each member. The 

range of all the obtained graph limits its scope of the axis to -

4.0 and 2.0 for the force densities of struts and cables, 

respectively. Each run of the genetic algorithm is conducted 

for 100 maximum generations, using a population size of 

100. The tolerance   in Eq. (9b) is set to 0.01 for all the 

analysis. 

5.1 Truncated Icosahedral Tensegrity 

The regular truncated icosahedral tensegrity has 60 nodes 

and 120 elements that consist of 30 identical compression 

members and 90 identical tension cables. After the proposed 

form-finding procedure, all results formed to have one self-

stress state (s=1) and 55 infinitesimal mechanism modes. qt, 

qv and qb are denoted by the force densities in the truncating-

edge cables, vertical cables and struts, respectively [15]. 

As shown in Fig. 3, four different results of the truncated 

icosahedral tensegrity in self-equilibrium are obtained. The 

four lines refer to a comparison between the results of qv 

versus qb where the truncated edge cables have typical force 

densities (qt =1.0). As expected, the force density curve of 

family 1 is in perfect agreement with the corresponding 

analytical solution [14]. Koohestani and Guest [16] also 

presented three sets of force densities and the final geometries 

of the three cases. These three sets of force densities are 

compared with present results in Fig. 3. Case 1 (qv = 0.69, qb 

= -0.33) lies in family 1, while case 2 (qv = 0.77, qb = -0.53) 

and 3 (qv = 7.21, qb = -1.25) lie in the equilibrium path of 

family 2. Case 3 is not marked in Fig. 3 because the range of 

force density is beyond the scope of the axis of Fig. 3 In this 

case, except for family 1 they do not also mention the typical 

lines of the various families. Fig. 4 shows four representative 

self-equilibrium configuration of truncated icosahedral 

tensegrities as all the cables with unit value (qt = qv =1.0). 

The geometry of family 1 shows a form of typical regular 

truncated icosahedral tensegrity where the cables lie along the 

edges of the structure. Comparison of the total length ratio 

(∑lc / ∑ls) and energy where all of the cable has typical force 

densities (qt = qv =1.0) is presented in Table 1. Thus, the 

higher family number, the greater value of total length ratio 

and strain energy density is obtained. These results tend to be 

similar to those of truncated dodecahedral tensegrity. These 

results also show that a regular form is effective in terms of 

energy. 

 
Fig. 3: Comparison between the results of qv versus qb for a 

truncated icosahedral tensegrity 

 
Fig. 4: Four representative self-equilibrium configuration of 

truncated icosahedral tensegrities: (a) Family 1 (b) Family 2 (c) 

Family 3 (d) Family 4 
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TABLE I 

COMPARISON OF THE TOTAL LENGTH RATIO AND ENERGY IN CASE THAT ALL 

OF THE CABLE HAS A VALUE OF 1.0  

(TRUNCATED ICOSAHEDRAL TENSEGRITY) 

Results for qt 

=1.0 
qv qb ∑lc / ∑ls 

Strain energy 

density 

Family 1 1.0 -0.4 1.1 1.2 

Family 2 1.0 -0.6 1.3 5.9 

Family 3 1.0 -1.6 2.1 24.4 

Family 4 1.0 -2.6 2.8 56.0 

VI. CONCLUSION 

In this study, a generalized form-finding method of the 

truncated polyhedral tensegrity is presented by using a force 

density method combined with a genetic algorithm. Multiple 

equilibrium paths of the force density for the truncated 

icosahedral tensegrity can be obtained. Based on the 

theoretical developments and numerical investigation, the 

following remarks can be made: 

∙ While most of previous investigators presented Z-based 

geometry only for the truncated polyhedral tensegrities, 

various new families of the tensegrity shapes are generated by 

adjusting the range of the force density of the struts. 

∙ Among all the families of the geometry for the truncated 

polyhedral tensegrity considered, Z-based geometry is formed 

to be most effective in terms of strain energy density and 

cable-to-strut length ratio.  

∙ The nodal connectivity and unilateral conditions of the 

elements of the tensegrity do not change during the whole 

process of form-finding even for different families of force 

density curves. 

As a natural extension of the present research, the various 

form-finding method for other types of tensegrities awaits 

further attention.  
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