
  
Abstract—The effect of iron on the uniformity of the field 

produced by an axisymmetric thick solenoid is considered. Using 
an integral equation derived for brevity using the quaternion 
variable of Hamilton the components of the magnetic induction are 
computed. The solution to the vector potential and field 
components is also derived using the Euler-Maclaurin Summation 
formula to convert the doubly infinite summation to an integral. 
 

Keywords— Time independent field, the quaternion variable,  
the Euler-Maclaurin summation formula.  

I. INTRODUCTION 
HE complex form of Green’s theorem is: 
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where ( , )f z z  is a complex valued function that depends 

on z and its conjugate z , with z = x + iy. The region R is 
bounded by the curve C where first order derivatives of are 
assumed continuous. Introducing a simple pole in R at 

0z and imposing that ( , )f z z , has unit residue, then by 
construction:   
 

( , )f z z = 0( , ) ( , )w z z g z z  

Where g has unit residue at 0z z= and ( , )w z z  is 
analytic in R. By enclosing the singularity in a circle 

∑ centre 0z  and with the usual connecting contour, then 
for this punctured region as shown in figure 1,  
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so that  
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(1) 
If the pole lies on the curve C then it can be shown using 

the Plemelj formulae, or by indenting the contour, that  
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Using this equation one would be able to solve a variety of 
potential rewritten as Fredholm integral equations of the first 
and second kind respectively.  

II. THE THREE DIMENSIONAL COUNTERPART 
Here the four dimensional quaternion operator of 

Hamilton will be used to derive the three dimensional 
counterpart of equation (1). The quaternion variable: 
 [t, r ] = (t, x, y, z) = (t, ix, jy, kz) 

where  r ix jy kz= + + , the separators i, j, k satisfy the 
following multiplication table:   

TABLE I 
* i j k 
i -1 k -j 
j -k -1 i 
k j -i -1 

Where the * denotes multiplication, the separators must 

not be confused with the unit vectors   , ,i j k . Writing the 

quaternion v as [V, v ] where V is a scalar and v  is the 

vector  
1 2 3v iv jv kv= + + , then it follows that  
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vw =  [V, v ] [W, w ] 

      = [VW- v . w , V w +W v + v ∧ w ] 
 

Where the . and ∧  are the usual scalar and cross product 
of vectors. Thus for the vector operator ∇ , it follows that  
 

[0, ][ , ] [0, ][ , ]
R S

V v dv s V v ds∇ =∫ ∫  

 
i.e.  
 

[ . , ] [ . , ]
R S

v V v dv n v V n n v ds−∇ ∇ + ∇ ∧ = − + ∧∫ ∫  

                                                                      (2) 
 

Equation (2) is remarkable in the sense that this simple 
looking expression contains Gauss’ divergence theorem and 
Stoke’s theorem of vector calculus, where n is the unit 
outward normal to the surface S, enclosing the region R and 
dv and ds are the usual volume and surface differentials 
respectively. Equation (2) forms the basis of the three 
dimensional counterpart of equation (1). The functions 
involved will be dependent on two position vectors P  and 

Q , with W chosen to represent the reciprocal of the distance 

from  P  to Q , so that  
 

1W r−=    
 
and   
 

3
PW rr−∇ = − ,  

 

So that 2 2 0P QW W∇ = ∇ = , where differentiation is 

carried out with respect to the coordinates of P with Q  
fixed denoted by the subscript p. When differentiating with 
respect to the coordinates of Q  a suffix Q will be used. Now 
it can be shown that: 
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integrating this last identity over a region R, bounded 
externally by a closed surface S and internally by a small 
sphere 0s  of radius 0r  and centre Q then  
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Applying the operator [0, ]Q∇  to both sides of equation 
(3) gives the left hand side as  
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similarly for the right hand side of equation (3) i.e.,  
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hence by equating both sides the following is valid  
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the vector part of equation (4) is the three dimensional 

counterpart of (1). 

III. APPLICATION TO MAGNETOSTATIC FIELD PROBLEM 
Equation (4) will now be applied to calculate the field 

components associated with an axisymmetric conductor of 
rectangular cross section situated equidistant from two semi-
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infinite regions of iron of finite permeability are computed. 
The magnetostatic field associated with iron-free 
axisymmetric systems has been considered in [1], [2] and by 
many others, for example reference [3] - [5] take into 
account the effects of the presence of iron on such systems. 
The main advantages of introducing iron are: 

i. Higher fields are provided for the same current, 
producing substantial power savings over conventional 
conductors. 

ii. The field uniformity is improved even for 
superconducting solenoids by placing the iron in a suitable 
position.  

The geometry considered is shown in figure 2, a toroidal 
conductor V’ of rectangular cross section having inner radius 
A, outer radius B and length L-2ε, is located equidistant 
between two semi-infinite regions of iron of finite 
permeability a distance L apart, the axis of the torus being 
perpendicular to the iron boundaries. The region V between 
the conductor and the iron is assumed insulating. Cylindrical 
polar coordinates (ρ,φ,z) are used where ρ and z are 
normalized in terms of L. Prior to the work described in [3] 
the presence of iron in axisymmetric systems had been 
largely ignored see [2] and [6] et al. Using cylindrical 
coordinates ( , , )zρ ϕ , for the conductor of figure 2 in the 
presence of iron of finite permeability, the vector part of 
equation (4) is:   
 

0 3 3

3 3
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                                                                (5) 
  

The governing equations are those of Maxwell thus: 
 

B∇ ∧ =
0

'
in V

Ce in Vφ

    
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Where eφ is a unit vector in the direction of increasing φ 

and C is a constant with   
 

. 0B∇ =  in V and V’    
 

With boundary conditions 
 

0 0,1n B on z∧ =     =  
as ρ  → ∞  
as )(, ℜ∈∞→ Mρ  

The position vector of a point r  in cylindrical coordinates 
is: 
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Considering the volume integral over V’ in equation (5) 

and calculating the triple cross product gives  
 
r B∧ ∇ ∧ =
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and hence the volume integral becomes  
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the j component vanishes due to the integrand being an 
odd function, so that   
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                                                                      (6) 
Expanding these integrals in a Maclaurin series in ρ it can 

be shown (see [9]) that the i and j components of expression 
(6) are given by  
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Where w=z-z’. Now to consider the surface integral S 
where  
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Where the discs Si (i=1,2,3) are shown in figure 3. On the 

discs S1 and S2, 0n B∧ = , so that the integral S1 becomes  
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With z=0 on S1. Using the expression for r  with outward 

drawn normal to S1 equal to –i, then  
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similarly S2 (with z=1) becomes  
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in the integrals S1 and S2 the j component vanishes. 

Similarly on S3 considering S3 such that  
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and using the vector identity:  

 
( ) ( . ) ( . )

( ) ( . ) ( . ) ( . ) ( . )
A B C AC B A B C

r n B n B r r B n r n B n B r
∧ ∧ = −

⇒ ∧ ∧ − = − −
 

                                                                      (7) 
 

With outward drawn normal to S3 radial, so that  
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In this last equation the point P  is allowed to occupy the 

boundary points Q  giving rise to a diagonally dominant 
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system of algebraic equations for the unknown field 
values zB and Bρ on the iron boundaries. Once these have 
determined, to calculate the field components off the iron 
boundaries at ( , )zρ  the coordinates are input into 
expression (8) used as a formula. The respective field 
components ( , )zB zρ  and ( , )B zρ ρ  can then be determined 
near the axis.  

IV. CALCULATION OF THE FIELD COMPONENTS USING THE 
EULER-MACLAURIN SUMMATION FORMULA 

Here use of the Euler-Maclaurin summation will be made 
to convert the doubly infinite summation corresponding to 
the image coils to an integral. Much literature exists on the 
derivation of the formula thus only the final formula will be 
quoted. We have seen [10] that: 
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which may be written as  
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Where 1 2( ) ( ) ( )f n f n f n= + . So that the effect of the 

image coils has been separated from the main coil. To these 
images we apply the Euler-Maclaurin Summation formula. 
Considering the term  
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So clearly the method will cater for the case when 

1≠µ but this is as expected as this is the iron free situation. 
In order to make any progress with this integral the integrand 
will be expanded in a Maclaurin series in α which will be a 
small parameter. Thus 
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Where =)(zSν  Schlafli’s polynomial of order 

ν , )0)(0 zzS ∀= , (see [11]). 

=)(zEν Weber’s function of order ν , (see [11]) and 
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With similar manipulation as just described it can be 
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To proceed with this method these special functions must 
be written in a form so that they can be integrated over the 
volume of interest. 

 

V. NEUMANN’S FUNCTION, BESSEL FUNCTION OF THE              
SECOND KIND 

Here the Bessel function of the second kind has been 
obtained, taking the definition of the Neumann function as  
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Where F(r) and F(n+r) are the digamma functions, [1] 

arising from the differentiation of the gamma function when 
expressed as an infinite limit. Using properties of the 
digamma function gives: 
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Where 'γ is the Euler-Mascheroni constant (as shown in 
[1]). So finally for n=0 the limiting value is:  
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VI. THE WEBER FUNCTION AND ITS RELATION TO THE 
STRUVE FUNCTION. 

By definition the Weber function may be expressed as  
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Where to avoid confusion the Euler-Mascheroni constant 

has been denoted by 'γ  and ϑγ cosx= . Thus integration 
over the volume of interest can now be performed. That is  
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VII. CONSIDERING THE ORDER γδ  TERM IN THE EXPRESSION 

FOR ),( zrAϕ  

Considering the )(γδO term and denoting this as  
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Where B(m,n) is the Beta function and ),,,( 2zcbaF is the 
Hypergeometric function, so that  
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In [10] it has been shown that these integrals containing 

the series of the hypergeometric function are uniformly 
convergent in the interval of integration so that with some 
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VIII. CONSIDERING THE ORDER 
0k TERM IN THE EXPRESSION 

FOR Θ .  

Considering the term and denoting this integral as 0K  that 
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X.  CONSIDERING THE ORDER 
0δβ  TERM IN THE EXPRESSION 

FOR ),( zrAϕ . 

Considering the )( 0δβO term in equation (12) and 

denoting this term by 0∆  , say where  
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XI. CONSIDERING THE ORDER δβ  AND γ  TERMS IN THE 

EXPRESSION FOR ),( zrAϕ . 

Considering the )(δβO and )(γO terms and denoting 
this integral as  
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It can be shown that (see [7])  
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Beta function and ),,,( 2zcbaF is the hypergeometric 
function whose convergence has already been discussed, thus 
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Once again this integral has be computed see Pavlika [10], 

thus finally 
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Where 120 ,, ∆KK and 2∆  are now known.  

XII.  CONCLUSIONS. 
The two methods of solution were found to be in good 

agreement however more terms are required for the method 
of solution based on the Euler-Maclaurin summation 

formula. The effect of the permeability of the iron is shown 
in figures 4, 5, 6 and 7.   

XIII.  TABLES 
 

TABLE II 
 VALUES OF Aφ(R,Z) USING THE USING THE QUATERNION METHOD OF 

SOLUTION 
r Z µ=103 µ=102 µ=10 µ=1 
   0 0.1 0 0 0 0 
0.1 0.1 0.89172 0.881238 0.7576 0.3481 
0.2 0.1 1.79492 1.762867 1.5141 0.6902 
0.3 0.1 2.69390 2.645277 2.2679 1.0201 
0.4 0.1 3.59466 3.528858 3.0178 1.3319 
0.5 0.1 4.49780 4.414002 3.7625 1.6196 
      
0.1 0.2 0.89782 0.882508 0.7642 0.3733 
0.1 0.3 0.89596 0.883737 0.7693 0.3926 
0.1 0.4 0.89920 0.884629 0.7726 0.4049 
0.1 0.5 0.89943 0.884955 0.7738 0.4091 
  

TABLE III 
VALUES OF BR(R,Z) USING THE QUATERNION METHOD OF SOLUTION 

r Z µ=103 µ=102 µ=10 µ=1 
0.1 0.1 5.832E-3 0.0163 0.1042 0.0362 
0.2 0.1 1.315E-2 0.0343 0.2120 0.0776 
0.3 0.1 2.344E-2 0.0556 0.3674 0.1426 
0.4 0.1 3.819E-2 0.0820 0.4521 0.1599 
0.5 0.1 5.887E-2 0.1151 0.5914 2.0972 
      
0.1 0.2 8.426E-3 0.0166 0.0852 0.2937 
0.1 0.3 8.083E-3 0.0136 0.0607 0.2072 
0.1 0.4 4.898E-3 0.0071 0.0316 0.0107 
0.1 0.5 0 0 0 0 

 
 

TABLE  IV 
VALUES OF BZ(R,Z) USING  USING THE QUATERNION METHOD OF SOLUTION 

r Z µ=103 µ=102 µ=1 
   0 0.1 17.9170 17.6164 6.9822 
0.1 0.1 17.0150 17.6151 7.0023 
0.2 0.1 17.9091 17.6112 7.0628 
0.3 0.1 17.8991 17.6047 7.1635 
0.4 0.1 17.8852 17.5965 7.3046 
0.5 0.1 17.8673 17.5839 7.4860 
     
0.1 0.2 17.9732 17.6546 7.5233 
0.1 0.3 17.9723 17.6771 7.9259 
0.1 0.4 17.9861 17.6996 8.1803 
0.1 0.5 17.9867 17.7015 8.2673 
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XIV. FIGURES 
 

 
Fig. 1 The region R bounded by the curve C showing the 

singularity z0 inside R 

 

 
Fig. 2 A toroidal conductor V’ of rectangular cross section located 

midway between two semi infinite regions of iron of finite 
permeability. The region V is assumed to be insulating. 

 

 
 

Fig. 3 The volume of interest over which the integrations are 
performed 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

International Conference on Machine Learning, Electrical and Mechanical Engineering (ICMLEME'2014) Jan. 8-9, 2014 Dubai (UAE)

http://dx.doi.org/10.15242/IIE.E0114011 132

http://dx.doi.org/10.1093/imamat/2.2.111
http://dx.doi.org/10.1093/imamat/2.2.111
http://dx.doi.org/10.1093/imamat/2.2.111
http://dx.doi.org/10.1093/imamat/2.2.111


 

 
Fig. 4 The variation of Bz(ρ,z) with ρ and z for two semi-infinite regions of iron of unit permeability. +:ρ=0.3, :ρ=0.2, •:ρ=0.1 •:ρ=0.3 

 

 
Fig. 5 The variation of Bz(ρ,z) with ρ and z for two semi-infinite regions of iron of infinite permeability. +:ρ=0.1, :ρ=0.2, 

  

 
Fig. 6 The variation of Br(ρ,z) with ρ and z for two semi-infinite regions of iron of unit permeability. +:ρ=0.1, :ρ=0.2, •:ρ=0.3 

  

 
Fig. 7 The variation of Bρ (ρ,z) with ρ and z for two semi-infinite regions of iron of infinite  permeability. +:ρ=0.1, :ρ=0.2, •:ρ=0.3 
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