
  

Abstract— Auscultation of heart sound (HS) signals serves as an 
important primary approach to diagnose cardiovascular diseases 
(CVDs) for centuries. Tackling the drawbacks of traditional 
auscultation with intrinsic restriction of ears limitation and low 
efficiency, automatic auscultation using embedded-link devices is able 
to provide timely intelligent HS interpretation and diagnosis for 
anyone, anytime, and anywhere conveniently. To explore a HS 
analysis method with simplicity, high efficiency, rapidity and 
convenience for resource-limited embedded-link e-health apparatus, 
this paper conducts a synthetic investigation of existing prevalent and 
up-to-date HS processing techniques, including HS de-noising and 
analysis. HS analysis approaches are generally categorized into 
feature-based analysis and entire-HS analysis without demanding 
feature extraction. After thorough study and comparison, the 
feature-based HS analysis method using discrete wavelet transform 
(DWT) is discovered as the best candidate for embedded-link e-health 
applications due to its high performance, good robustness and rapid 
computation. 
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I. INTRODUCTION 

OR centuries, cardiovascular diseases (CVDs) remain the 
leading cause of death throughout the world [1]. 

Auscultation of heart sound (HS) signals plays a vigorous role in 
CVDs early prevention and detection. By directly listening to 
HS with an acoustic stethoscope, it provides a cost-effective 
approach to inspect abnormality of HS signals having potential 
pathological CVDs symptoms. Unfortunately, the intrinsic 
disadvantages of traditional HS auscultation have significantly 
hindered its profound development, such as: (1) inherent 
restriction due to human ears limitation; (2) inefficiency in 
qualitative and quantitative analysis; (3) insufficiency in 
tackling with inaudible HS components; (4) disability to record, 
replay, and store the HS signals; (5) subjectivity of the analyst 
with spotty training and experiences. As a solution, automatic 
auscultation using electronic stethoscope has been enjoying a 
booming development recently. Furthermore, for portable 
usability, an intelligent e-health auscultation system resided on 
embedded-link mobile devices is grossly attractive to provide 
timely intelligent HS interpretation and diagnosis for anyone, 
anytime, and anywhere conveniently.  
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Fig. 1 Waveform of a representative HS signal.  

 
For embedded-link e-health applications, the HS analysis 

approaches should meet the following technical requirements: 
(1) simplicity due to the resource limitation and computation 
ability of embedded-link mobile devices; (2) rapidity to provide 
quasi-real-time diagnostic results for on-site users; (3) high 
efficient to handle diversified HS signals and diseases; (4) 
convenience with provision of local diagnosis independence of 
server or hospital doctors. During the past decades, various HS 
analysis techniques have been exploited [17], [18], [20], [24]. 
Our research group commits great efforts on it too [2], [3], [24]. 
The targets of this paper are to summarize the formidable 
bottleneck problems and reveal the relevant modern 
technologies, seek an appropriate HS analysis approach for 
embedded-link e-health applications through exhaustively 
reviewing prevalent and up-to-date HS analysis techniques as 
well as based on our group’s R&D experiences. 

II. HS SIGNALS 

A. HS Signals Description 
Heart sound, or phonocardiogram (PCG), is the repetitive 

“lub-dub” sound generated by heartbeats and its representative 
waveform is shown in Fig. 1. Three conceptions are related with 
signals: (1) fundamental heart sounds (FHS), including S1 and 
S2 caused by the sudden closure of the mitral and tricuspid 
valves, and the closure of aortic and pulmonary valves 
respectively [4]; (2) abnormal heart sounds (AHS), including S3 
and S4 (always inaudible) generated by the rapid ventricular 
filling in early diastole, and the ventricular filling due to atrial 
contraction separately; (3) murmurs, divided as innocent 
murmurs and harmful murmurs, produced by turbulent blood 
flow through a blocked valve or backward flow through a 
leaking valve. FHS, AHS, and murmurs are all important 
indicators of CVDs. Besides these components, several HS 
activities are also utilized in CVDs diagnosis, including systole 
(defined as the interval between the end of S1 to the start of 
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same cycle’s S2) and diastole (defined as the interval between 
the end of S2 to the start of next cycle’s S1) as depicted in Fig. 1. 

B. HS Acquisition 
In HS automatic auscultation, electronic stethoscope is used 

to acquire and record the HS signals efficiently. Since the 
frequencies of all important HS components are below 1000 Hz, 
an appropriate sampling frequency varying from 4000 to 20000 
Hz is usually employed. It is noteworthy that the correct position 
of auscultation is very important for acquiring qualified signals 
due to the fact that different CVDs should sample HS from 
different position of chest.  

C. HS Benchmark Databases 
The HS benchmark database is essential for HS study and 

tests. Table I lists several popular HS benchmark databases, 
including qdheart [5], eGeneral Medical (eGM) [6], cardiac 
auscultatory recording database (CARD) [7], and Thinklabs [8]. 
Among these databases, qdheart had been mostly used until 
2010, but not available since then. Although eGM is also 
commonly used, the provided signals are fake and artificially 
generated. The signals provided by CARD are original HS 
signals directly acquired from patients at Johns Hopkins 
Hospital. In Table I we discover and show it out that, the 
parameters of listed databases differ a lot which leads to 
incomparable results among methods using different databases. 
Thus, a standard HS benchmark database with uniform settings, 
parameters, and doctor’s indices under standard sampling 
criteria is indispensable. 

III.  HS DE-NOISING 

The HS signals are nonstationary and imperfect blended with 
noises from sounds of breathes, contact of stethoscope with 
chest skin and other ambient sounds. Therefore, to obtain the 
qualified HS signals for further analysis and interpretation, HS 
de-noising is crucial mission in signal pre-processing. Here two 
most appreciated de-noising technologies are introduced. 

A. Short-Time Fourier Transform  
The principle of short-time Fourier transform (STFT) is to 

acquire the time-frequency (TF) characteristics of HS with a 
short sliding time window. The time window should be short 
enough to guarantee the signal stationary within the short period. 
By conducting Fourier transform on the windowed signals, the 

time-varying frequencies results could be obtained. Since the 
windowed HS components are quasi-stationary yet the noises 
are not, it could be distinctly observed that in TF domain the TF 
results of HS components congregate while the noises are 
dispersed. Consequently the noises could be separated from HS 
components through fuzzy detection successfully. However, for 
signals with sudden changes, it is troublesome to find an 
appropriate time window length since the shorter window could 
guarantee the signal stationary but at the cost of reduction in 
frequency resolution [9]. 

B. Discrete Wavelet Transform  
Different from STFT, discrete wavelet transform (DWT) uses 

variable window sizes thus able to obtain good time resolution 
at high frequency and good frequency resolution at low 
frequency. DWT decomposes windowed signals into shifted 
and scaled version of the mother wavelet. Studies show that 
after DWT decomposition, the obtained wavelet coefficients of 
HS signals are greatly larger than coefficients of noises [10]. 
Therefore, decomposition items with coefficients below a 
certain level are discarded as noises and the remained 
decomposition items are constructed to obtain noise free HS 
signals. 

IV. HS ANALYSIS 

HS analysis aims to map the input HS signals into the disease 
categories, which could be double classes (“healthy” and 
“diseased”) or multiple classes with detailed type of disease. 
Two kinds of HS analysis methods are commonly used, 
feature-based HS analysis method and entire-HS analysis 
method without demanding feature extraction. 

A. Feature-Based HS Analysis 
Features are defined as specific parameters or characteristics 

extracted from the acquired signals that have potential to 
discriminate HS classes [11]. Normally three generic steps are 
contained in feature-based HS analysis: segmentation, feature 
extraction, and classification.  

1. Segmentation 
Segmentation is to identify the boundaries of cardiac cycles 

and HS components from contiguous HS signals. HS 
segmentation can be divided into two manners. One 
segmentation manner is based on electrocardiology (ECG) 
signal. Regarding ECG as the reference signal, the locations of 

TABLE I 
HS BENCHMARK DATABASES 

Database Sampling Frequency (Hz) Resolution 
(bits) 

Number of 
Recordings Provider 

qdheart [5] 22050 16 42 The Affiliated Caediovascular Hospital of 
Medical College QingDao University 

eGM [6] 5000, 8000, 8012, 11025, 
22050, 22257 N/A 64 eGeneral Medical Inc., USA 

CARD [7] 4000 16 N/A Johns Hopkins University 

Thinklabs [8] N/A 16 22 Thinklabs 
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S1 and S2 can be traced according to the QRS wave and T wave 
respectively [12]. Unfortunately, this manner requires extra 
acquisition, storage, and analysis of ECG signal, which 
increases the computing burden and generally is unsuitable for 
portable usability. Another segmentation manner is based on 
envelope analysis. After obtaining the envelope of HS signal, 
the envelop peaks are detected which correspond to HS peaks. 
Consequently, the cardiac cycles are segmented. References 
[13]-[16] are examples of this manner with various envelop 
detection methods. Reference [13] employs the energy 
distribution of HS signals to form the envelope, and then a 
threshold value is set to detect the peaks of S1 and S2. 
Afterwards, the systole and diastole are recognized according to 
the time duration characteristics. However, unqualified HS 
signals or inappropriate threshold values induce incorrect 
segmentation results. Reference [14] is based on homomorphic 
envelogram, in which by means of homomorphic filtering, the 
smooth HS signal envelogram is acquired to detect successfully 
the HS components. Even for signals with low peaks, artifacts, 
or signal splits, this method performs segmentation robustly. 
Reference [15] adopts DWT to remove the murmur first, thus to 
eliminate its effects on segmentation accuracy, afterwards, the 
envelope is calculated for segmentation [16].  

2. Feature Extraction 
Feature extraction is to calculate the identifying parameters or 

characteristics from each cycle. Based on the variety of utilized 
characteristics, HS feature extraction approaches are roughly 
classified into acoustic feature extraction and TF feature 
extraction. 

2.1) Acoustic Feature Extraction  
Acoustic feature extraction methods are derived from the 

human auditory perception systems in tradition auscultation 
diagnosis. Two typical acoustic feature extraction methods are 
Mel-frequency cepstral coefficient (MFCC) and timbre 
extraction. 

MFCC is based on the theory of human auditory system that 
human audition spaces linearly at low frequency band and 
logarithmically at high frequency [17]. First, discrete Fourier 
transform (DFT) is conducted on the windowed overlapping HS 
segments to get the energy distribution in frequency domain. 
After that, a set of triangle filters are adopted to get the 
logarithmic Mel spectrum as the inputs of discrete cosines 
transform (DCT). Finally, the cepstral coefficients are obtained 
and utilized as the HS features for further analysis. Since it 
simulates the human ear sound processing system, MFCC is 
keen at low frequency band where HS signals locate and 
exhibits robustness even with noisy signals [18]. However, the 
two transforms contained in MFCC algorithm lead to an 
increase in computation complexity and time. 

The foundational principle of timbre extraction is that with 
different CVDs HS signals possess different timbre 
characteristics which provide the reference for CVDs 
recognition. The timbre analysis algorithm in [19] is suggested 
to differentiate instruments with different timbres initially, and 
thus extract timbre features based on the descriptors of MPEG7 
(moving picture expert group 7)  such as harmonic centroid, log 
attack time, spectral centroid, and temporal centroid. For better 

results, some additional descriptors like tristimulus parameters 
and transient duration could also be used.  Compared with 
MFCC, this method is much easier and saves lots of 
computation. Our team is attempting to apply principle of this 
method to extract timbre features of HS signals instead of 
instruments, and it is still under development so far. 

2.2) TF Feature Extraction 
Since HS signals are nonstationary with marked changes in 

time and frequency, only time or frequency features are 
insufficient to support the diagnosis. Hence, TF features 
reflecting HS pathological information in both dimensions that 
may not be heard or seen in the raw HS or HS waveform will 
contribute to high accuracy in the following classification. The 
principle of TF is to extract the time and frequency features 
simultaneously using various transformations, such as STFT, 
and DWT.  

It is mentioned above that STFT provides TF features by 
using a short sliding window. Since signals with different 
diseases exhibit different TF distributions [20], thus the 
achieved TF features are potential to be used in signals 
recognition and CVDs diagnosis. However, STFT cannot track 
sensitive sudden changes in time domain and suffers from the 
tradeoff between time and frequency resolution. 

DWT was developed as a method to obtain high-resolution 
time and frequency information simultaneously. With the aid of 
low-pass and high-pass filters, the input signal is decomposed 
into subband signals as approximations and details. These 
subband signals are much more distinct to exhibit HS 
components, which is beneficial for extracting HS features such 
as the rhythm and intensity of HS components. It is worthwhile 
to note that the widths of filter banks are varied with the 
decomposition levels. While a wide filter gives rise to high 
frequency components, a narrow filter picks up the low 
frequency components. Consequently, the obtained 
multiresolution components could overcome the problem of TF 
resolution tradeoff as in STFT. In addition, DWT also leads to a 
considerable reduction in computing time [20]. 

3. Classification 
Classification is to categorize the nature of HS with the aid of 

extracted parameters and characteristics. Several prevalent 
classification methods including artificial neural networks 
(ANN), hidden Markov models (HMM), support vector 
machine (SVM), and dynamic time warping (DTW) are 
summarized here.  

ANN is a highly interconnected system of computational 
nodes or neurons. A typical example of ANN is 
back-propagation neural network (BPNN) which generally 
consists of input layer, hidden layers, and output layer [21]. 
ANN system is optimized through the iteratively training 
procedure and the outputs converge to the training data. Due to 
its simple structure and flexibility for solving nonlinear complex 
problems, ANN is widely used for dealing with multiple 
dimensions and continuous features classification. However, 
long training time and large training sample set are required. 

HMM is a probabilistic state machine in which the states of 
the machine are unobservable, yet the outputs are observable. 
HMM with its Markov chain structure can inherently 
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incorporate the time sequential character of the signal. By using 
the Gaussian mixture densities, the HMM is also expected to 
faithfully represent the various spectral characteristics of the HS 
signal.  In a recent study [22], it is found that HMM performs 
much better than ANN in classifying HS signals with 10 
different diseases. 

SVM is a method of machine learning based on statistical 
theorems. It could simultaneously minimize the empirical 
classification error and maximize the geometric margin. 
However, a large sample set is required in order to guarantee its 
prediction accuracy. 

DTW algorithm is based on the idea of dynamic optimization 
in order to find the minimum characteristic values of the time 
calibration path between reference signal and test signal [23]. 
DTW is prevalently used in signal processing because it can 
efficiently minimize the effects of shifting and distortion for 
time sequences. Besides, it is capable of matching two 
sequences of unequal length and has strong anti-white noises 
ability [23]. 

B. Entire-HS Analysis 
In entire-HS analysis methods, the HS are processed and 

classified as a whole directly without the need of feature 
extraction. The complexity and similarity analysis (CSA) in [24] 
is an example of entire-HS analysis methods. 

In CSA, the HS signals are treated as a whole, avoiding the 
operations of segmentation and feature extraction. First, the 
N-gram code of the input HS signal is calculated using musical 
instrument digital interface (MIDI) coding and ASCII coding. 
After that, the Lempel-Ziv (LZ) complexity between N-gram of 
input signal with unknown disease and the N-gram of the 
reference signals with known diseases in database is computed 
one by one. From the complexity results, similarity score 
between them can be obtained. With a higher similarity between 

input signal and certain reference signal, it is more convincing to 
diagnose the input signal as the corresponding disease. 

Since it releases the requirements of segmentation and feature 
extraction, CSA is robust to freaky signals and free from 
segmentation errors. However, it suffers numerous 
computations which restricts its wide applications. 

V. DISCUSSION 
 A comparison between several prevalent and up-to-date 

works is made as shown in Table II. The employed benchmark 
databases, algorithms, as well as the performances are listed for 
an intuitive description. It is noteworthy that when interpreting 
the results shown in Table II, a direct comparison based only on 
the numerical results is misleading, since they are taken in 
various test conditions with differed samples. Nevertheless, this 
table remains useful for offering a general idea of listed 
techniques. 

As shown in Table II, CSA is one kind of entire-HS analysis 
method while others are all based on feature extraction. CSA 
method obtains a diagnosis accuracy of 74.8% for handling 9 
types of CVDs which is the lowest compared with other 
methods. In addition, the numerous encoding procedures in 
CSA algorithm induce a large computation quantity. In Table II, 
three MFCC-based approaches are also listed. Although the 
achieved accuracy is higher than 80%, the MFCC-based 
methods suffer from computation complexity caused by two 
inverse transforms. DWT method exhibits advantageous 
diagnosis performance with accuracy as high as 99% for 
recognizing 7 types of CVDs. DWT also has superior robustness 
for noisy HS signals since the diagnosis accuracy is 90% under 
10 dB white noise test and 92% without noises. Furthermore, 
DWT is outstanding in HS signals de-noising and segmentation. 
Segmentation is even nonessential in DWT methods so that the 

TABLE II 
COMPARISON BETWEEN DIFFERENT HS ANALYSIS METHODS 

Method HS Data 
Need of 
Segmen- 

tation 

Need of 
Feature 

Extraction 

Classification 
Technique Diagnosis Accuracy Classification Types Remarks 

CSA eGM, 
Cadionics [26] No No Inference Machine 74.8% [24] Multiple classes 

(Normal and 9 CVDs) 
Complex 
Encoding 

MFCC 

Site-sampled Yes Yes BPNN 80% [18] Double classes (Normal 
and Diseased) 

Complex 
Computation Databese [29] Yes Yes DTW 92.5% without noises; 91.6% 

with 40dB white noise [23] 
Multiple classes 

(Normal and 5 CVDs) 

Site-sampled, 
database [27] Yes Yes HMM 99.21% [1] Multiple classes 

(Normal and 9 CVDs) 

DWT 

Site-sampled Yes Yes Grow and Learn 
Networks 99% [25] Multiple classes 

(Normal and 6 CVDs) 

Short 
Computing 

Time 
Site-sampled Yes Yes 

Linear Vector 
Quantization  

Networks 
96% [25] Multiple classes 

(Normal and 6 CVDs) 

Site-sampled, 
database 
[28]-[31] 

No Yes Neural Networks 92% without noises; 90% 
with10 dB white noise [16] 

Double classes (Normal 
and Diseased) 
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segmentation errors can be avoided. In conclusion, regarding the 
requirements of simplicity, rapidity, high efficiency, and 
convenience, DWT method is discovered as the best candidate 
for HS analysis in embedded-link e-health applications. 

VI. CONCLUSION 
Aim at exploring a dedicated HS analysis approach for 

embedded-link e-health applications, this paper conducts a 
thorough reviewing of the existing prevalent and up-to-date HS 
analysis techniques. After study in depth and comprehensive 
comparison, the feature-based HS analysis method using DWT 
is the preferred option due to its high performance, good 
robustness, and short computing time. 

The future work focuses on adapting DWT methods for HS 
analysis and fulfilling the implementation of automatic HS 
auscultation and diagnosis on embedded-link mobile devices. 
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